• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

NUMERICAL PREDICTION OF EFFECTIVE ELASTIC PROPERTIES AND EFFECTIVE THERMAL EXPANSION COEFFICIENT FOR POROUS YSZ MICROSTRUCTURES IN SOLID OXIDE FUEL CELLS

Shakrawar, Sangeeta 03 October 2013 (has links)
Solid oxide fuel cells represent a potentially important application for ceramic materials. There are, however, some significant issues which can affect the reliability and durability of the cell. Mechanical failure owing to stress is one of the critical factors which can affect the stability and working life of the fuel cell stacks. These stresses generate in Solid Oxide Fuel Cells (SOFCs) owing to mechanical forces and change in temperature during fabrication, assembly and operating conditions. There can be chances of cell delamination and micro-cracks in cell electrodes if these stresses are too high. The elastic properties and thermal expansion coefficient play a vital role to improve cell stability and performance. These properties depend on the types of materials and geometries of the composites. In this research, a numerical framework to predict the effective elastic properties and the effective thermal expansion coefficient for porous Yttria-Stabilized Zirconia (YSZ) electrode microstructures in a Solid Oxide Fuel Cell is presented. The electrodes of Solid Oxide Fuel Cells are discretized as porous microstructures that are formed by randomly distributed and overlapping spheres with particle size distributions that match those of actual ceramic powder. Three-dimensional (3D) microstructures of YSZ-pore are formed with a porosity ranging from 25% to 40%. The technique involves the construction of the YSZ-pores microstructures based on measurable starting parameters and subsequent numerical prediction of effective elastic properties and effective thermal expansion coefficient. Three domain sizes are considered for the generation of YSZ-pore microstructures. The method of prediction of effective Young’s modulus (Eeff), effective Poisson’s ratio , effective bulk modulus effective shear modulus , and effective thermal expansion coefficients for various porosities (P) of Yttria-Stabilized Zirconia (YSZ) electrode material in Solid Oxide Fuel Cells is based on the Finite Volume analysis which in turn is based on the solution of the linear elastic stress analysis problem. The predicted results are compared with some theoretical correlations of two-phase composites for effective elastic properties and effective thermal expansion coefficient. It has been found that predicted results are falling inside of the upper and lower bounds. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2013-10-01 17:01:05.068
2

Domain evolution processes in ferroelectric ceramics

Kim, Kwanlae January 2015 (has links)
The aim of this doctoral research is to understand domain evolution processes in ferroelectrics using piezoresponse force microscopy (PFM) and Monte Carlo simulation. The results provide improved knowledge of domain evolution processes, and systematic experimental methods for research on domain evolution. There has been extensive previous research on domain evolution in ferroelectrics, but the research was mainly constrained to simple domain patterns. However, ferroelectric domains tend to form complex patterns that generate low-energy domain configurations. In this research, several methods such as statistical analysis of PFM data, ex situ/in situ PFM observation under electrical/mechanical loading and combining PFM with electron backscatter diffraction are employed to study domain evolution processes in complex domain patterns. The results show that domain switching almost always takes place by the evolution of pre-existing domain patterns, rather than direct flipping of polarization. Also the net effect of domain evolution processes follows a primary principle that positive work is done by external loads. But this principle is not always followed for microscopic switching processes. Multiple types of domain switching occur simultaneously, and occasionally an overwriting process involves unfavourable as well as favourable domain switching. Domain switching is significantly constrained by the pre-existing domain patterns. Meanwhile, angle-resolved PFM is developed for the systematic interpretation of PFM signal. Using lateral PFM images taken from multiple sample orientations, angle-resolved PFM maps are generated based on the angle of phase reversal in the PFM signal. The resulting maps reliably show complex domain patterns which may not appear in vertical and lateral PFM images. A model of domain evolution is developed using Monte Carlo simulation. Polarization switching by electric field and mechanical stress in the model is shown to take place via the motion of domain walls between pre-existing domains. Typical domain broadening processes are reproduced through this simulation.
3

Texture determination from ultrasound for HCP and cubic materials

Lan, Bo January 2014 (has links)
Crystallographic texture in polycrystalline HCP and cubic materials, often developed during thermomechanical deformations, has profound effects on properties at the macroscopic or component level. Given the respective natures of current detection techniques, a non-destructive, three-dimensional bulk texture detection method for these materials has not yet been developed. This thesis aims to achieve this goal through systematic studies on the relationship between ultrasonic wave velocity and texture. The feasibility of such development is firstly reviewed via the combination of computational and experimental studies on exemplary HCP materials. Numerical results obtained via a representative volume element (RVE) methodology reveal that the wave speed varies progressively and significantly with changing texture, and experimental ultrasound studies combined with EBSD characterisation demonstrate distinguished velocity profiles for samples with different textures. Thus the possibility of the development is demonstrated from these combined results. A novel convolution theorem is then presented, which couples the single crystal wave speed (the kernel function) with polycrystal orientation distribution function to give the resultant polycrystal wave speed function. Firstly developed on HCP and then successfully extended to general anisotropic materials, the theorem expresses the three functions as harmonic expansions thus enabling the calculation of any one of them when the other two are known. Hence, the forward problem of determination of polycrystal wave speed is solved for all crystal systems with verifications on varying textures showing near-perfect representation of the sensitivity of wave speed to texture as well as quantitative predictions of polycrystal wave speed. More importantly, the theorem also presents a solution to the long-standing inverse problem for HCP and cubic materials, with proof of principle established where groups of HCP and cubic textures are recovered solely from polycrystal wave velocities through the theorem and the results show good agreements with the original textures. Therefore the theorem opens up the possibility of developing a powerful technique for bulk texture measurement and wave propagation studies in HCP, cubic materials and beyond.
4

Single crystal ferroelectrics : macroscopic and microscopic studies

Potnis, Prashant January 2011 (has links)
The aim of this thesis was to improve the understanding of microstructure in single crystal ferroelectrics. This was achieved through macroscopic testing of Lead Magnesium Niobate – Lead Titanate (PMN-PT) and microscopic observations of Barium Titanate (BT) single crystals. Multi-axial polarization rotation tests on PMN-PT showed a gradual increase in the change in dielectric displacement due to ferroelectric switching as the electric field is applied at increasing angles to the initial polarization direction. A relatively high remnant polarization for loading angle near to 90° suggested that PMN-PT is more polarizable in certain directions. Strains measured in two directions, parallel to the electric field and perpendicular to the electric field, showed a noticeable variation on two opposite faces of the specimen suggesting an effect of local domain configurations on macroscopic behaviour. A micromechanical model gave an insight into the switching systems operating in the crystal during the polarization rotation test. Domain structure in BT was mapped using synchrotron X-ray reflection topography. By making use of the angular separation of the diffracted reflections and specimen rocking, different domain types could be unambiguously identified, along with the relative tilts between adjacent domains. Fine needle domains (width ≈ 10μm) were successfully mapped providing a composite topograph directly comparable with optical micrograph. The domain structure was confirmed using other techniques such as piezoresponse force microscopy and atomic force microscopy/scanning electron microscopy and optical observations on the etched crystal. Results show that combined use of multiple techniques is necessary to gain a consistent interpretation of the microstructure. Finally, domain evolution in BT under compressive mechanical loading was observed in-situ using optical and X-ray diffraction techniques providing a series of images that show ferroelastic transition. The domain configurations influence the switching behaviour and constitutive models that can account for such effects need to be developed. Quantitative and qualitative data presented in this thesis can assist model development and validation.
5

Studies of frictional interface behaviour : experiments and modelling

Mulvihill, Daniel Martin January 2012 (has links)
Predictive models of structures containing frictional joints presently suffer from poor descriptions of interface behaviour at the joints. This thesis aims to address this shortfall by furthering the physical understanding of parameters affecting interface behaviour such as friction and contact stiffness. Aspects of friction and contact stiffness relevant to the characterisation of fretting joints are investigated by a combined modelling and experimental approach. Friction and wear behaviour in gross-slip fretting are investigated by in-line and rotational fretting tests. New 3D topography parameters are found to be useful in the analysis of surfaces during fretting. Wear-scar shape is found to be dependent on material. A phenomenon whereby friction increases during the gross-slip phase of individual cycles is found to be due to wear-scar interaction primarily through the interference of local features distributed over the contact area. These features are similar in size to the applied fretting stroke. A simple model to explain the behaviour is put forward which shows that wear-scar shape determines the form of the friction variation. A finite-element (FE) model of the interaction of an elastic-plastic asperity junction is used to predict sliding friction coefficients. The modelling differs from previous work by: permitting greater asperity overlaps, enforcing an interface shear strength, and allowing material failure. The results are also used to predict friction coefficients for a stochastic rough surface. The magnitudes of the predicted friction coefficients are generally representative of experimental measurements. Results suggest that friction arises from both plasticity and tangential interface adhesion. Contact stiffness is studied for both fretting and non-fretting. A technique to isolate the true interface stiffness from results derived from load-deflection data is developed by comparing experimental and FE results. In the fretting wear case, comparison of tangential contact stiffness results in the literature with FE results reveals an interface whose compliance dominates the response to the extent that stiffness is proportional to contact area. In fretting tests such as this, wear debris is thought to be a factor contributing to high interface compliance. Non-fretting experiments performed here show that, at higher pressures, interface domination is reduced as the contact approaches the smooth case. Experiments are performed where contact stiffness is measured simultaneously by both ultrasound and digital image correlation. The effect of normal and tangential loading upon the contact stiffness (normal and tangential) is investigated. Experimental evidence showing that ultrasound measures an ‘unloading’ stiffness while DIC measures a ‘loading’ stiffness is obtained for the case of tangential loading where the ‘DIC stiffness’ decreases with increasing tangential load whereas the ‘ultrasound stiffness’ remains approximately constant. On average, ultrasound gives magnitudes 3.5 and 2.5 times stiffer than the DIC results for the normal and tangential stiffness cases, respectively. The difference in magnitudes can largely be physically explained, and is relatively small considering the significant differences between the techniques. Therefore, both methods can claim to give valid measurements of contact stiffness – though each has its own limitations which are outlined herein.

Page generated in 0.1562 seconds