• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spacecraft Attitude and Power Control Using Variable Speed Control Moment Gyros

Yoon, Hyungjoo 21 November 2004 (has links)
A Variable Speed Control Moment Gyro (VSCMG) is a recently introduced actuator for spacecraft attitude control. As its name implies, a VSCMG is essentially a single-gimbal control moment gyro (CMG) with a flywheel allowed to have variable spin speed. Thanks to its extra degrees of freedom, a VSCMGs cluster can be used to achieve additional objectives, such as power tracking and/or singularity avoidance, as well as attitude control. In this thesis, control laws for an integrated power/attitude control system (IPACS) for a satellite using VSCMGs are introduced. The power tracking objective is achieved by storing or releasing the kinetic energy in the wheels. The proposed control algorithms perform both the attitude and power tracking goals simultaneously. This thesis also provides a singularity analysis and avoidance method using CMGs/VSCMGs. This issue is studied for both the cases of attitude tracking with and without a power tracking requirement. A null motion method to avoid singularities is presented, and a criterion is developed to determine the momentum region over which this method will successfully avoid singularities. The spacecraft angular velocity and attitude control problem using a single VSCMG is also addressed. A body-fixed axis is chosen to be perpendicular to the gimbal axis, and it is controlled to aim at an arbitrarily given inertial direction, while the spacecraft angular velocity is stabilized. Finally, an adaptive control algorithm for the spacecraft attitude tracking in case when the actuator parameters, for instance the spin axis directions, are uncertain is developed. The equations of motion in this case are fully nonlinear and represent a Multi-Input-Multi-Output (MIMO) system. The smooth projection algorithm is applied to keep the parameter estimates inside a singularity-free region. The design procedure can also be easily applied to general MIMO dynamical systems.

Page generated in 0.1514 seconds