Spelling suggestions: "subject:"bimechanical effect"" "subject:"bymechanical effect""
1 |
Experimental study of the mechanical effect of a clayey soil by adding rubber powder for geotechnical applicationsAlvarez, N., Alvarez, N., Gutierrez, J., Duran, G., Pacheco, L. 28 February 2020 (has links)
At present, worrying quantities of tires are discarded due to the growth in demand for vehicles in the world, which has a direct impact on the deterioration of the environment since they normally go to landfills. Based on the background found, the use of this material for geotechnical applications can help reduce the pollution they generate and improve the physical and mechanical properties of soils. Therefore, this research seeks to evaluate a greater shear strength and capacity of support to the penetration of the clayey soil by means of the addition of 1.5%, 2.5% and 3.5% of rubber powder recycled. For this, the Atterberg limits analysis, the modified proctor compaction test, shear box and CBR were performed. For the shear box test, the results reflect that the cohesion of the mixture increased and the angle of internal friction decreased with respect to the natural soil, resulting in the sum in an increase of shear strength. On the other hand, the percentage of CBR increased, this means that the rubber helped the soil to be more rigid and have a greater resistance to penetration. These mixtures could be used in different projects within geotechnical engineering, as it presents an improvement in shear strength and an acceptable support index value (CBR).
|
2 |
Quantum Mechanical Effects on MOSFET ScalingWang, Lihui 10 July 2006 (has links)
This thesis describes advanced modeling of nanoscale bulk MOSFETs incorporating critical quantum mechanical effects such as gate direct tunneling and energy quantization of carriers. An explicit expression of gate direct tunneling for thin gate oxides has been developed by solving the Schroinger equation analytically. In addition, the impact of different gate electrode as well as gate insulation materials on the gate direct tunneling is explored. This results in an analytical estimation of the potential solutions to excessive gate leakage current. The energy quantization analysis involves the derivation of a quantum mechanical charge distribution model by solving the coupled Poisson and Schroinger equations. Based on the newly developed charge distribution model, threshold voltage and subthreshold swing models are obtained. A transregional drain current model which takes into account the quantum mechanical correction on device parameters is derived. Results from this model show good agreement with numeric simulation results of both long-channel and short-channel MOSFETs.The models derived here are used to project MOSFET scaling limits. Tunneling and quantization effects cause large power dissipation, low drive current, and strong sensitivities to process variation, which greatly limit CMOS scaling. Developing new materials and structures is imminent to extend the scaling process.
|
3 |
Removal Mechanisms of Protective Iron Carbonate Layer in Flowing SolutionsYang, Yang 11 September 2012 (has links)
No description available.
|
Page generated in 0.048 seconds