• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of a Contact Resonance Atomic Force Microscopy Scan Speed Phenomenon

Glover, Christopher Cash 03 August 2018 (has links)
<p> There are many unexplained phenomena that have been observed via atomic force microscopy (AFM) experiments. Understanding the cause of these phenomena is important to perform more accurate quantitative imaging using contact-resonance AFM and other contact-mode AFM techniques at higher scan speeds. This thesis presents evidence to confirm the existence of a scan speed dependent contact-mode AFM phenomenon and applies a squeeze film hydrodynamic lubrication model to explain it. Contact-resonance spectroscopy is used to investigate the phenomenon in which, above a critical scan speed, there is a monotonic decrease in the measured contact-resonance frequency with increasing scan speed. The observed phenomenon was replicated on a mica sample in a randomized set of AFM experiments performed at the National Institute for Standards and Technology (NIST). A literature review revealed that there is a thin water film that exists on mica under certain relative humidity (RH) conditions that has dynamic properties. The squeeze film hydrodynamic lubrication model predicts the general trend observed in the experimental data. However, there exists a higher order model that can be used to investigate the scan speed phenomenon more completely. </p><p>
2

Development of a Novel Additive Manufacturing Method| Process Generation and Evaluation of 3D Printed Parts Made with Alumina Nanopowder

Hensen, Tucker Joseph 24 February 2018 (has links)
<p> Direct coagulation printing (DCP) is a new approach to extrusion-based additive manufacturing, developed during this thesis project using alumina nanopowder. The fabrication of complex ceramic parts, sintered to full density, was achieved and the details of this invention are described. With the use of additive manufacturing, complex features can be generated that are either very difficult or unattainable by conventional subtractive manufacturing methods. Three unique approaches were taken to create a slurry suitable for extrusion 3D-printing. Each represented a different method of suspending alumina nanopowder in a liquid; a bio-polymer gel based on chitosan, a synthetic polymer binder using poly-vinyl acetate (PVA), and electrostatic stabilization with the dispersant tri-ammonium citrate (TAC). It was found that TAC created a slurry with viscosity and coagulation rate that were tuneable through pH adjustment with nitric acid. This approach led to the most promising printing and sintering results, and is the basis of DCP. Taguchi and fractional factorial design of experiments models were used to optimize mixing of the alumina slurry, rheological properties, print quality, and sinterability. DCP was characterized by measuring the mechanical properties and physical characteristics of printed parts. Features as small as ~450 ?m in width were produced, in parts with overhangs and enclosed volumes, in both linear and radial geometries. After sintering, these parts exhibited little to no porosity, with flexural modulus and hardness comparing favorably with conventionally manufactured alumina parts. A remarkable aspect of DCP is that it is a completely binderless process, requiring no binder removal step. In addition, DCP can employ nanopowders, allowing for enhanced mechanical properties as observed in nano-grained materials. Perhaps most importantly, any material that acquires a surface charge when in aqueous media has the potential to be used in DCP, making it a method of additive manufacturing using many metals and ceramics other than alumina.</p><p>
3

High-Pressure Study of Bio-inspired Multi-Functional Nanocomposites Using Atomic Force Microscopy Methods

Diaz Gonzalez, Alfredo J. 08 September 2017 (has links)
<p> Bioinspired design has been crucial in the development of new types of hierarchical nanocomposites. Particularly, the nacre-mimetic brick-and-mortar structure has shown excellent mechanical properties as well as gas barrier properties and optical transparency. Along with these intrinsic properties, the layered structure has been designed to serve as sensing devices. Here we expand the multi-functionality of nacre-mimetics by designing an optically transparent and electron conductive coating that reacts to high-pressure based on PEDOT:PSS and nanoclay. The main objectives of this project are: (i) to develop a multifunctional nanocomposite and evaluate the effect of high-pressure applied at the surface and (ii) to establish protocols for the morphological and structural characterization, and electro-mechanical testing of the nanocomposites based on a combination of atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmittance spectroscopy. </p><p> The synthesis of the nanocomposite, containing PEDOT:PSS (conductive polymer) and nanoclay, was achieved using the self-assembly of core/shell platelets. Two different types of nanoclay, Cloisite Na+ and Laponite RD, are used and their properties compared. The reduction of thickness in PEDOT:PSS has been shown to increase the light transmittance across a film. Similarly, the thickness of the nanocomposite was reduced and compared to PEDOT:PSS. The measured optical transmittance for both nanocomposites is comparable to the bare polymer, demonstrating that the addition of the nanoclay does not affect the transparency of PEDOT:PSS significantly. The layered structure of the nanocomposites is investigated by imaging the fracture surface with SEM. The fracture surface of the Laponite RD based nanocomposite is much flatter than the Cloisite Na+ nanocomposite, since the particle size in Cloisite Na+ is about 10 times larger than Laponite RD. The characterization of electro-mechanical properties of the nanocomposites was performed using the correlation of conductive atomic force microscopy and contact resonance force microscopy to measure the local variations. The analysis shows that in thin and transparent films, there is segregation in the response of Cloisite Na+ based nanocomposites compared to the bare polymer or Laponite RD nanocomposite, hence the investigation focuses on Laponite RD. </p><p> For Laponite RD, we investigate the 3-D distribution of nanoclay in the coating. The distribution of nanoclay at the surface is elucidated by mapping the dissipative and conservative interactions between tip and sample in bimodal AFM. Measuring the strain produced by the tip, the 3-D structure is inferred using models for mechanical properties of nanocomposites. Single platelet measurements are used to infer the inter-platelet distance. It is known that the free amplitude of the higher eigenmode can be modulated to produce large forces in bimodal AFM. The pressure estimated for the typical cantilever parameters used are in the range 1.2-3.3 GPa, which is used to apply high-pressure to the subsurface structure of the nanocomposite. </p><p> We show that the tip-surface interaction modifies the subsurface morphology of the nanocomposite and results in changes of the out-of-plane current. Also, the structural modification caused by the bimodal AFM treatment results in local changes in mechanical properties. This behavior is obtained for the Laponite RD nanocomposite, but it is not observed for the Cloisite Na+ nanocomposite or the bare polymer. Laponite RD has a platelet size similar to the tip, while Cloisite Na+ is much larger leading to a reduction in pressure. By modelling the transmission probability of electrons, geometrical changes in the structure are examined and shown to modify the tunneling of the electrons through the coating. Specifically, parallel compression of the nanoclay (modelled as barriers for electrons) leads to a change in the transmission probability of the electrons. Depending on the kinetic energy of the electrons, the transmission probability could either increase or decrease.</p><p>

Page generated in 0.1089 seconds