• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 79
  • 2
  • 1
  • Tagged with
  • 87
  • 87
  • 87
  • 76
  • 15
  • 8
  • 8
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Modelling for the mechanical behavior of cementitious granular materials

Zhong, Xiaoxiong 01 January 1998 (has links)
Crack damages due to load application are commonly observed in cementitious granular materials such as concrete, cemented sand, and ceramic materials. Previous analytical models for these types of materials have been developed based on continuum mechanics using a phenomenological approach. However, the theories of continuum mechanics have limitations when used for analyzing fracture mechanism and localized damages at a micro-scale level. Therefore, a microstructural approach is desirable for the analysis of these types of materials. In this dissertation, a contact law was derived for the inter-particle behavior of two particles connected by a cement binder. Microcracking process within binder was fully taken into account by regarding crack length as a basic damage factor. The binder initially contains small-size cracks which propagate and grow under external loading. As a result the binder is weakened with lower strength in shear and tension. Theory of fracture mechanics was employed to model the propagation and growth of these microcracks for both the shear fracture mode and normal fracture mode. The contact law was then incorporated in the analysis for the overall damage behaviors of cementitious granular material using the statistical micromechanics approach and the distinct element method. These overall damage behaviors include the stress-strain relationship, fracture strength, development of damage zone, and fatigue deformation. The micro-parameters affecting these behaviors are mainly the microcrack length and density, binder toughness, and binder elastic constants. In the numerical simulations, the cementitious granular materials were represented by 2-D random assemblies of rods bonded by cement binders with preexisting microcracks. Stress-strain relationships were modeled and validated for the uniaxial tension and compression tests, biaxial tension and compression tests, and double cantilever beam test. Force-deflection relationship and fatigue deformation were predicted and validated for the three-point beam tests. The validations tests showed good agreement between the results of numerical simulations and that obtained from available experimental tests. It has been indicated that the proposed models are capable of modeling the mechanical behaviors of cementitious granular materials.
72

Behavior of bellows /

Becht, C., January 2000 (has links)
Thesis (Ph.D.), Memorial University of Newfoundland, 2000. / Bibliography: leaves 190-199.
73

Theoretical and experimental investigation of adhesion in microelectromechanical systems /

Xue, Xiaojie, January 2007 (has links)
Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2007. / Source: Dissertation Abstracts International, Volume: 68-11, Section: B, page: 7633. Adviser: Andreas A. Polycarpou. Includes bibliographical references (leaves 143-154) Available on microfilm from Pro Quest Information and Learning.
74

Effect of nanoscale defects on electrical and optical properties in III-V semiconductors /

You, Jeong Ho, January 2007 (has links)
Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2007. / Source: Dissertation Abstracts International, Volume: 68-11, Section: B, page: 7634. Adviser: Harley T. Johnson. Includes bibliographical references (leaves 135-147) Available on microfilm from Pro Quest Information and Learning.
75

Flexible electronics based on polysilicon TFTs on steel foil: Fabrication and characterization under strain.

Kuo, Po-Chin. January 2010 (has links)
Thesis (Ph.D.)--Lehigh University, 2010. / Adviser: Miltiadis K. Hatalis.
76

Methodologies for the optimization of fibre-reinforced composite structures with manufacturing uncertainties

Hamilton, Ryan Jason January 2006 (has links)
Thesis (M.Tech.:Mechanical Engineering)-Dept. of Mechanical Engineering, Durban University of Technology, 2006 xv, iii, 108 leaves / Fibre Reinforced Plastics (FRPs) have been used in many practical structural applications due to their excellent strength and weight characteristics as well as the ability for their properties to be tailored to the requirements of a given application. Thus, designing with FRPs can be extremely challenging, particularly when the number of design variables contained in the design space is large. For example, to determine the ply orientations and the material properties optimally is typically difficult without a considered approach. Optimization of composite structures with respect to the ply angles is necessary to realize the full potential of fibre-reinforced materials. Evaluating the fitness of each candidate in the design space, and selecting the most efficient can be very time consuming and costly. Structures composed of composite materials often contain components which may be modelled as rectangular plates or cylindrical shells, for example. Modelling of components such as plates can be useful as it is a means of simplifying elements of structures, and this can save time and thus cost. Variations in manufacturing processes and user environment may affect the quality and performance of a product. It is usually beneficial to account for such variances or tolerances in the design process, and in fact, sometimes it may be crucial, particularly when the effect is of consequence. The work conducted within this project focused on methodologies for optimally designing fibre-reinforced laminated composite structures with the effects of manufacturing tolerances included. For this study it is assumed that the probability of any tolerance value occurring within the tolerance band, compared with any other, is equal, and thus the techniques are aimed at designing for the worst-case scenario. This thesis thus discusses four new procedures for the optimization of composite structures with the effects of manufacturing uncertainties included.
77

Domain evolution processes in ferroelectric ceramics

Kim, Kwanlae January 2015 (has links)
The aim of this doctoral research is to understand domain evolution processes in ferroelectrics using piezoresponse force microscopy (PFM) and Monte Carlo simulation. The results provide improved knowledge of domain evolution processes, and systematic experimental methods for research on domain evolution. There has been extensive previous research on domain evolution in ferroelectrics, but the research was mainly constrained to simple domain patterns. However, ferroelectric domains tend to form complex patterns that generate low-energy domain configurations. In this research, several methods such as statistical analysis of PFM data, ex situ/in situ PFM observation under electrical/mechanical loading and combining PFM with electron backscatter diffraction are employed to study domain evolution processes in complex domain patterns. The results show that domain switching almost always takes place by the evolution of pre-existing domain patterns, rather than direct flipping of polarization. Also the net effect of domain evolution processes follows a primary principle that positive work is done by external loads. But this principle is not always followed for microscopic switching processes. Multiple types of domain switching occur simultaneously, and occasionally an overwriting process involves unfavourable as well as favourable domain switching. Domain switching is significantly constrained by the pre-existing domain patterns. Meanwhile, angle-resolved PFM is developed for the systematic interpretation of PFM signal. Using lateral PFM images taken from multiple sample orientations, angle-resolved PFM maps are generated based on the angle of phase reversal in the PFM signal. The resulting maps reliably show complex domain patterns which may not appear in vertical and lateral PFM images. A model of domain evolution is developed using Monte Carlo simulation. Polarization switching by electric field and mechanical stress in the model is shown to take place via the motion of domain walls between pre-existing domains. Typical domain broadening processes are reproduced through this simulation.
78

Texture determination from ultrasound for HCP and cubic materials

Lan, Bo January 2014 (has links)
Crystallographic texture in polycrystalline HCP and cubic materials, often developed during thermomechanical deformations, has profound effects on properties at the macroscopic or component level. Given the respective natures of current detection techniques, a non-destructive, three-dimensional bulk texture detection method for these materials has not yet been developed. This thesis aims to achieve this goal through systematic studies on the relationship between ultrasonic wave velocity and texture. The feasibility of such development is firstly reviewed via the combination of computational and experimental studies on exemplary HCP materials. Numerical results obtained via a representative volume element (RVE) methodology reveal that the wave speed varies progressively and significantly with changing texture, and experimental ultrasound studies combined with EBSD characterisation demonstrate distinguished velocity profiles for samples with different textures. Thus the possibility of the development is demonstrated from these combined results. A novel convolution theorem is then presented, which couples the single crystal wave speed (the kernel function) with polycrystal orientation distribution function to give the resultant polycrystal wave speed function. Firstly developed on HCP and then successfully extended to general anisotropic materials, the theorem expresses the three functions as harmonic expansions thus enabling the calculation of any one of them when the other two are known. Hence, the forward problem of determination of polycrystal wave speed is solved for all crystal systems with verifications on varying textures showing near-perfect representation of the sensitivity of wave speed to texture as well as quantitative predictions of polycrystal wave speed. More importantly, the theorem also presents a solution to the long-standing inverse problem for HCP and cubic materials, with proof of principle established where groups of HCP and cubic textures are recovered solely from polycrystal wave velocities through the theorem and the results show good agreements with the original textures. Therefore the theorem opens up the possibility of developing a powerful technique for bulk texture measurement and wave propagation studies in HCP, cubic materials and beyond.
79

Methodologies for the optimization of fibre-reinforced composite structures with manufacturing uncertainties

Hamilton, Ryan Jason January 2006 (has links)
Thesis (M.Tech.:Mechanical Engineering)-Dept. of Mechanical Engineering, Durban University of Technology, 2006 xv, iii, 108 leaves / Fibre Reinforced Plastics (FRPs) have been used in many practical structural applications due to their excellent strength and weight characteristics as well as the ability for their properties to be tailored to the requirements of a given application. Thus, designing with FRPs can be extremely challenging, particularly when the number of design variables contained in the design space is large. For example, to determine the ply orientations and the material properties optimally is typically difficult without a considered approach. Optimization of composite structures with respect to the ply angles is necessary to realize the full potential of fibre-reinforced materials. Evaluating the fitness of each candidate in the design space, and selecting the most efficient can be very time consuming and costly. Structures composed of composite materials often contain components which may be modelled as rectangular plates or cylindrical shells, for example. Modelling of components such as plates can be useful as it is a means of simplifying elements of structures, and this can save time and thus cost. Variations in manufacturing processes and user environment may affect the quality and performance of a product. It is usually beneficial to account for such variances or tolerances in the design process, and in fact, sometimes it may be crucial, particularly when the effect is of consequence. The work conducted within this project focused on methodologies for optimally designing fibre-reinforced laminated composite structures with the effects of manufacturing tolerances included. For this study it is assumed that the probability of any tolerance value occurring within the tolerance band, compared with any other, is equal, and thus the techniques are aimed at designing for the worst-case scenario. This thesis thus discusses four new procedures for the optimization of composite structures with the effects of manufacturing uncertainties included.
80

Increasing the use of fibre-reinforced composites in the Sasol group of companies : a case study

Mouton, Jacques January 2007 (has links)
Thesis (D.Tech.: Mechanical Engineering)-Dept. of Mechanical Engineering, Durban University of Technology, 2007 xxx, 190 leaves, Annexures A-D / A composite material comprises two or more materials with properties that are superior to those of the individual constituents. Composites have become important engineering materials, especially in the fields of chemical plant, automotive, aerospace and marine engineering. The development of more advanced materials and manufacturing techniques in composites has grown from humble beginnings in the 1930s to a recognized and well-respected engineering discipline, providing solutions to conventional and challenging applications. At present, fibre-reinforced composites (FRCs) are amongst the most common types of composites used. They are produced in various forms with different structural properties, and designers, specifiers and end-users can choose from an almost endless list of these materials, providing design flexibility as well as low manufacturing and maintenance cost. Many suggest that composites have revolutionised the chemical and petro-chemical industries. Examples of applications include tanks and chemical reactor vessels that contains many hundreds of litres of hazardous chemicals, reinforced pipes measuring up to several meters in diameter conveying dangerous gases and so on. The South Africa Coal, Oil and Gas Corporation Limited (SASOL) was established in September 1950. From a small start-up, the company has grown to be a world leader in the commercial production of liquid fuels and chemicals from coal and crude oil. Sasol manufactures more than 200 fuel and chemical products at its main plants in Sasolburg and Secunda in South Africa as well as at several other plants abroad. Its products are exported to more than 90 countries around the world. The use of composites in general, and fibre reinforced composites in particular has received little support in Sasol through the years. Some sporadic use of these materials in the construction of process equipment, e.g. tanks, vessels and piping has taken place with varying degrees of success. While the use of equipment fabricated with fibre-reinforced composites has proven extremely successful in the chlorine producing facility in Sasolburg, catastrophic failures have taken place in Secunda in critical fire water systems made of these materials. The history of correct use and application of fibre-reinforced equipment has shown that the cost of ownership of such equipment is significantly lower than similar metallic equipment, therefore reducing costs and safety risks. However, even though this technology brings a company like Sasol closer to the realisation of the vast number of advantages and solutions offered by these materials, the reality is that most engineering personnel are still applying traditional (viz. steel and wood) technology as used by our predecessors. The work presented here attempts to indicate the relevance of fibre-reinforced composites for Sasol, and to detail efforts aimed at the raising of awareness amongst appropriate personnel at Sasol to increase the use of these materials in major capital projects and day-to-day maintenance contracts, therefore taking advantage of the superior performance of fibre-reinforced composites in demanding applications. In support of this drive, part of the work presented indicates the status as well as progress of the composites industry in the last few years. This project was therefore aimed at identifying the level of utilization of fibre-reinforced composites at Sasol, and the possible improvement in benefits of using these technologies. A methodology was developed, using engineering as well as marketing principles, to reach the engineering personnel in various divisions and seniority levels of Sasol to increase the awareness of the capabilities of composites materials, specifically regarding fibre-reinforced composites. Questionnaires were used to gauge the level of awareness while various methods, e.g. one-on-one meetings, seminars, conferences, electronic media, etc were used to upgrade the target groups’ knowledge. The results of the initial survey to determine the status of various dimensions in the company are indicated as well as the outcomes at the end of the research period. In support of the process in Sasol, the development, interaction and cross-pollination of international and national role-players in the fibre-reinforcement industry with respect to chemical containment and Sasol are indicated. The importance of this two-legged process is demonstrated: it ensures a professional national support framework for companies like Sasol. Results are indicated, compared and discussed to give future direction in this ongoing process. As important to this process was the development of appropriate technical resources (like design standards and codes) to enable their use within the group. It was recognised early on that raising the level of awareness of the target groups was not enough and that these resources had to be in-place down the line so that those who chose to could start to implement these material technologies with the aid of the resources. The development of the necessary resources is also discussed. Finally, it will be shown that significant growth has taken place regarding the awareness within the group over the course of implementation of this project. Specifically, about 20% of the target groups have moved from a stage of no knowledge to higher levels of confidence. In terms of use of these materials, significant growth has also taken place judging by the number of plant requests, activity on major capital projects and so on. In fact, from almost nothing in 1999, over the last 5 years in excess of R137 Million has been spent on capital equipment manufactured from composite materials, with the majority in the last 2 years.

Page generated in 0.0929 seconds