• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efficient and Flexible Solution Strategies for Large-Scale, Strongly Coupled Multi-Physics Analysis and Optimization Problems

Westfall, James 03 June 2016 (has links)
<p> Aerospace problems are characterized by strong coupling of different disciplines, such as fluid-structure interactions. There has been much research over the years on developing numerical solution methods tailored to each of the different disciplines. The classical approach to solving these strongly coupled systems is to stitch together these individual solvers by solving for one discipline and using the solution as boundary conditions for the successive disciplines. In more recent years, research has focused on numerical methods that handle solving coupled disciplines together. These methods offer the potential of better computational efficiency. These coupled solution methods range from monolithic solution strategies to decoupled partitioned strategies. This research develops a flexible finite element analysis tool which is capable of analyzing a range of aerospace problems including highly coupled incompressible fluid-structure interactions and turbulent compressible flows. The goal of this research is to access the viability of streamline-upwind Petrov-Galerkin (SUPG) finite element analysis for compressible turbulent flows. Additionally, this research uses a selection of nonlinear solution methods, linear solvers, iterative preconditioners, varying degrees of coupling, and coupling strategies to provide insight into the computational efficiency of these methods as they apply to turbulent compressible flows and incompressible fluid-structure interaction problems. The results suggest that SUPG finite element analysis for compressible flows may not be robust enough for optimization problems due to ill-conditioned matrices in the linear approximation. This research also shows that it is the degree of coupling and criticality of the coupling that drives the selection of the most efficient nonlinear and linear solution methods.</p>
2

Aerodynamic Heating Analysis of Re-entry Space Capsule Using Computational Fluid Dynamics

Chhunchha, Aakash C. 03 July 2018 (has links)
<p> The present study deals with solving two-dimensional Reynolds Averaged Navier-Stokes equations for the Fire II re-entry capsule using Computational Fluid Dynamics (CFD). The primary goal is to model the aero thermodynamic flow characteristics around the capsule and estimate the surface heat flux distribution. Mach number value of 15.16 is chosen as a free stream condition corresponding to an altitude of 50 km. Taking advantage of the symmetry, only a quarter portion of the geometry is considered to generate the volume mesh for the simulation. The numerical models and convergence techniques that are implemented by the CFD solver are thoroughly described. </p><p> Special attention has been paid to validate the code. The value of shock stand-off distance obtained by means of benchmark empirical formulation is compared to the CFD analysis. An additional comparison between the simulated results and the approximated engineering correlations of convective stagnation point heat fluxes is made to ensure the validity of the obtained results. Overall, a satisfactory agreement is observed between the estimated values by engineering correlations and those predicted by the numerical solver. </p><p>
3

On Accelerating Road Vehicle Aerodynamics

Peters, Brett 10 May 2018 (has links)
<p> Road vehicle aerodynamics are primarily focused on developing and modeling performance at steady-state conditions, although this does not fully encompass the entire operating envelope. Considerable vehicle acceleration and deceleration occurs during operation, either because of driver input or from transient weather phenomenon such as wind gusting. With this considered, high performance road vehicles experience body acceleration rates well beyond &plusmn;1G to navigate courses during efficient transition in and out of corners, accelerating from maximum straight-line speed to manageable cornering speeds, and then back to maximum straight-line speed. This dissertation aims to answer if longitudinal acceleration is important for road vehicle aerodynamics with the use of transient Computational Fluid Dynamics (CFD) to develop a method for obtaining ensemble averages of forces and flow field variables. This method was developed on a simplified bluff body, a channel mounted square cylinder, achieving acceleration through periodic forcing of far field velocity conditions. Then, the method was applied to an open-source road vehicle geometry, the DrivAer model, and a high performance model which was created for this dissertation, the DrivAer-GrandTouringRacing (GTR) variant, as a test model that generates considerable downforce with low ground proximity. Each test body experienced drag force variations greater than &plusmn;10% at the tested velocities and acceleration rates with considerable variations to flow field distributions. Finally, an empirical formulation was used to obtain non-dimensional coefficients for each body from their simulated force data, allowing for force comparison between geometries and modeling of aerodynamic force response to accelerating vehicle conditions.</p><p>

Page generated in 0.1088 seconds