• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanism Design Theory for Service Contracts

Hong, Sukhwa 05 October 2015 (has links)
This paper presents a novel approach for designing and optimizing maintenance service contracts through the application of mechanism design theory. When offering a contract to its customer, the maintenance service provider seeks to specify contract terms - such as price, service features and incentives - that maximize the provider's profit, satisfy customer needs, allocate risks effectively and mitigate moral hazards. Optimal contract design has to account for asymmetric information and uncertainties associated with customer characteristics and behaviors. We illustrate our mechanism design approach by applying it to the contract design challenge of a gas turbine manufacturer, which also provides maintenance services for its aircraft engines. In our solution approach, we compute an optimal set of contracts. The entire set is presented to the customer and is designed such that the customer will accept one of the contract alternatives without negotiations. In addition to eliminating the costs and delays associated with negotiations, this approach also reveals the customer's private information to the service provider, which the provider can use to its benefit in maintenance management and future contract renewals. Furthermore, we design and incorporate win-win incentive mechanisms into the contracts, which reward the customer for actions that reduces maintenance costs. We present a deterministic and a stochastic mechanism design model, the latter accounting for uncertainties associated with customer actions, engine performance, and maintenance costs during the contract execution phase. / Master of Science
2

Optimal Consumer-Centric Delay-Efficient Security Management in Multi-Agent Networks: A Game and Mechanism Design Theoretic Approach

Schlake, Farimehr 01 May 2012 (has links)
The main aspiration behind the contributions of this research work is the achievement of simultaneuos delay-efficiency, autonomy, and security through innovative protocol design to address complex real-life problems. To achieve this, we take a holistic approach. We apply theoretical mathematical modeling implementing implications of social-economic behavioral characteristics to propose a cross-layer network security protocol. We further complement this approach by a layer-specific focus with implementations at two lower OSI layers. For the cross-layer design, we suggest the use of game and mechanism design theories. We design a network-wide consumer-centric and delay-efficient security protocol, DSIC-S. It induces a Dominant Strategy Incentive Compatible equilibrium among all rational and selfish nodes. We prove it is network-wide socially desirable and Pareto optimal. We address resource management and delay-efficiency through synergy of several design aspects. We propose a scenario-based security model with different levels. Furthermore, we design a valuation system to integrate the caused delay in selection of security algorithms at each node without consumer's knowledge of the actual delays. We achieve this by incorporating the consumer's valuation system, in the calculation of the credit transfers through the Vickrey-Clarke-Groves (VCG) payments with Clarke's pivotal rule. As the utmost significant contribution of this work, we solve the revelation theorem's problem of misrepresentation of agents' private information in mechanism design theory through the proposed design. We design an incentive model and incorporate the valuations in the incentives. The simulations validate the theoretical results. They prove the significance of this model and among others show the correlation of the credit transfers to actual delays and security valuations. In the layer-specific approach for the network-layer, we implement the DSIC-S protocol to extend current IPsec and IKEv2 protocols. IPsec-O and IKEv2-O inherit the strong properties of DSIC-S through the proposed extensions. Furthermore, we propose yet another layer-specific protocol, the SME_Q, for the datalink layer based on ATM. We develop an extensive simulation software, SMEQSIM, to simulate ATM security negotiations. We simulate the proposed protocol in a comprehensive real-life ATM network and prove the significance of this research work. / Ph. D.
3

Design Of Incentive Compatible Broadcast Protocols For Ad hoc Wireless Networks : A Game Theoretic Approach

Narayanam, Ramasuri 06 1900 (has links)
An ad hoc wireless network is an infrastructure-less, autonomous system of nodes connected through wireless links. In many current applications of ad hoc wireless networks, individual wireless nodes are autonomous, rational, and intelligent and are often referred to as selfish nodes, following game theoretic terminology. In an ad hoc wireless network, a typical node may be an intermediate node of a route from a source node to a destination node and therefore is often required to forward packets so as to enable communication to be established. Selfish nodes may not always forward the packets since the forwarding activity consumes the node’s own resources. Such behavior by individual nodes may lead to suboptimal situations where nodes, through their actions, lead to a state that is undesirable from an overall network viewpoint. To counter this, there is a need to stimulate cooperation through methods such as providing appropriate incentives. In this thesis, our interest is in designing rigorous incentive based methods for stimulating cooperation among wireless nodes, in the specific context of broadcast. In particular, we address the Incentive Compatible Broadcast problem: how do we design broadcast protocols that induce truth revelation by the individual wireless nodes? We do this using a game theory and mechanism design framework. Incentive compatibility of broadcast protocols could manifest in two forms: (1) Dominant Strategy Incentive Compatibility (DSIC) (also called strategy-proofness) and (2) Bayesian incentive compatibility (BIC). A DSIC broadcast protocol is one which makes it a best response for every wireless node to reveal its true type, regardless of what the other nodes reveal. A BIC broadcast protocol is one which makes truth revelation a best response for a node, given that the other nodes are truthful. The DSIC property is stronger and more desirable but more difficult to achieve. On the other hand, the BIC property is much weaker and easier to achieve. In this thesis, we first design a DSIC broadcast protocol for ad hoc networks using the well known VCG (Vickrey-Clarke-Groves) mechanisms and investigate its properties and performance. Next, we design a BIC broadcast protocol, investigate its properties, and compare its performance with that of the DSIC broadcast protocol. Both the protocols developed in this thesis provide an elegant solution to the incentive compatible broadcast problem in ad hoc networks with selfish nodes and help stimulate cooperation among the selfish wireless nodes.
4

Novel Mechanisms For Allocation Of Heterogeneous Items In Strategic Settings

Prakash, Gujar Sujit 10 1900 (has links) (PDF)
Allocation of objects or resources to competing agents is a ubiquitous problem in the real world. For example, a federal government may wish to allocate different types of spectrum licenses to telecom service providers; a search engine has to assign different sponsored slots to the ads of advertisers; etc. The agents involved in such situations have private preferences over the allocations. The agents, being strategic, may manipulate the allocation procedure to get a favourable allocation. If the objects to be allocated are heterogeneous (rather than homogeneous), the problem becomes quite complex. The allocation problem becomes even more formidable in the presence of a dynamic supply and/or demand. This doctoral work is motivated by such problems involving strategic agents, heterogeneous objects, and dynamic supply and/or demand. In this thesis, we model such problems in a standard game theoretic setting and use mechanism design to propose novel solutions to the problems. We extend the current state-of-the-art in a non-trivial way by solving the following problems: Optimal combinatorial auctions with single minded bidders, generalizing the existing methods to take into account multiple units of heterogeneous objects Multi-armed bandit mechanisms for sponsored search auctions with multiple slots, generalizing the current methods that only consider a single slot. Strategyproof redistribution mechanisms for heterogeneous objects, expanding the scope of the current state of practice beyond homogeneous objects Online allocation mechanisms without money for one-sided and two-sided matching markets, extending the existing methods for static settings.

Page generated in 0.0427 seconds