• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional Genomics of Mammalian Innate Immunity

Kiritsy, Michael C. 31 August 2020 (has links)
The breadth of genetic diversity in the mammalian immune response stands out amongst the ubiquity of variation seen in the genome, evidence that microbial infections have been a major driver of evolution. As technology has facilitated an understanding of the etiology of immunological diversity, so too has it enabled the assessment of its varied functions. Functional genomics, with its ability to assess both cause and effect, has revolutionized our understanding of fundamental biological phenomena and recalibrated our hypotheses. We build upon the model of host immunity established by rare genetic variants that are causative of immunodeficiencies, but that incompletely consider the complexities of the genome. To expand our understanding, we performed a series of forward genetic screens to identify regulators of distinct functions of the innate immune system. Our studies discovered genes with novel functions in antigen presentation and immunoregulation, including several involved in central metabolism. Studies in macrophages and dendritic cells identified mitochondrial respiration as a positive regulator of the interferon-gamma response, and cells incapable of respiration failed to activate T cells. Notably, human mutations in several of these genes are responsible for immune dysfunction. In summary, this work uses new methods in genetic engineering to systematically assess the regulation of innate immunity. Our results suggest that variation in these regulatory pathways is likely to alter immunity in states of health and disease. Thus, our work validates a new approach to identify candidate genes relevant to immune dysfunction.

Page generated in 0.0188 seconds