• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computational determination of convective heat transfer and pressure drop coefficients of hydrogenerators ventilation system. / Determinação computacional dos coeficientes de transferência de calor por convecção e perda de carga do sistema de ventilação de hidrogeradores.

Altea, Claudinei de Moura 29 July 2016 (has links)
The objective of the present work is to determinate the pressure drop and the heat transfer coefficients, normally applied to analytical calculations of hydrogenerators thermal design, obtained by applying numerical calculation (Computational Fluid Dynamics - CFD) and validated by experimental results and field measurements. The object of study is limited to the most important region of the ventilation system (the cooling air ducts of stator core) to get numerical results of heat transfer and pressure drop coefficients, which are impacted mostly by the entrance of air ducts. The numerical calculations considered three-dimensional, steady-state, incompressible and turbulent flow; and were based on the Finite Volume methodology. The turbulent flow computations were carried out with procedures based on RANS equations by selecting k-omega SST (Shear-Stress Transport) as turbulence model. Grid quality metrics were monitored and the uncertainties due to discretization errors were evaluated by means of a grid independence study and application of an uncertainty estimation procedure based on Richardson extrapolation. The validation of numerical method developed by the present work (specifically to simulate the flow dynamics behavior and to obtain numerically the pressure drop coefficient of the airflow to enter and pass through the Stator Core Air Duct in a hydrogenerator) is performed by comparing the numerical results to experimental data published by Wustmann (2005). The reference experimental data were obtained by a model test. The comparison between numerical and experimental results shows that the difference of pressure drop for Reynolds numbers higher than 5000 is 2% at maximum, while for lower Reynolds numbers, the difference increases significantly and reaches 10%. It is presented that the most reasonable hypothesis for higher discrepancy at lower Reynolds numbers can be assigned to the experiment\'s non-steady-state condition. It is to conclude that the proposed numerical method is validated for the upper region of the analyzed range. Additionally to the model test validation, field measurements were executed in order to confirm numerical results. Measurements of pressure drop in the stator core of a real hydrogenerator were a challenge. Nevertheless, despite all the difficulties and considerable high field measuring uncertainties, trend curves behavior are similar to numerical results. Finally, series of numerical calculation, varying geometrical parameters of the air-duct inlet design and operational data, were done in order to obtain pressure drop coefficients trend curves to be directly applied to analytical calculation routines of whole hydrogenerator ventilation systems. Parallel to it, thermal numerical calculation was executed in the prototype simulation in order to define the convective heat transfer coefficient. / O objetivo do presente trabalho é determinar os coeficientes de perda de carga e transferência de calor, normalmente aplicados nos cálculos analíticos de design térmico de hidrogeradores, obtido pela aplicação de cálculo numérico (Computacional Fluid Dynamics - CFD) e validado por resultados experimentais e medições de campo. O objeto de estudo é limitado à região mais importante do sistema de ventilação (os dutos de ar de arrefecimento do núcleo do estator) para obter resultados numéricos dos coeficientes de transferência de calor e de perda de carga, que são impactados principalmente pela entrada de dutos de ar. Os cálculos numéricos consideraram escoamentos tridimensionais, em regime permanente, incompressíveis e turbulentos; e foram baseados no método dos volumes finitos. Os cálculos de escoamento turbulento foram realizados com procedimentos baseados em equações médias (RANS), utilizando o modelo k-omega SST (Shear-Stress Transport) como modelo de turbulência. Métricas de qualidade de malha foram monitoradas e as incertezas devido à erros de discretização foram avaliadas por meio de um estudo de independência de malha e aplicação de um procedimento de estimativa de incertezas com base na extrapolação de Richardson. A validação do método numérico desenvolvido pelo presente trabalho (especificamente para simular o comportamento dinâmico do escoamento e obter numericamente o coeficiente de perda de carga do escoamento ao entrar no duto de ar e atravessar o núcleo do estator de um hidrogerador) é realizada comparando os resultados numéricos com dados experimentais publicados por Wustmann (2005). Os dados experimentais foram obtidos como referência por um teste de modelo. A comparação entre os resultados numéricos e experimentais mostra que a diferença da perda de carga para números de Reynolds mais elevados do que 5000 é no máximo de 2%, enquanto que para números de Reynolds inferiores, a diferença aumenta significativamente e atinge 10%. A hipótese mais razoável para a maior discrepância para número de Reynolds menores é a possível influência de instabilidades do escoamento no experimento, fazendo com que o regime seja não-permanente. Conclui-se que o método numérico proposto é validado para a região superior do intervalo analisado. Além da validação pelo ensaio de modelo, medições de campo foram executadas, a fim de confirmar os resultados numéricos. As medições de perda de carga no núcleo do estator de um hidrogerador real era um desafio. No entanto, apesar de todas as dificuldades e consideráveis incertezas da medição campo, o comportamento das curvas de tendência ficou alinhado com resultados numéricos. Finalmente, uma série de cálculos numéricos, variando parâmetros geométricos do design da entrada do duto de ar e dados operacionais, foram executados a fim de se obter curvas de tendência para coeficientes de perda de carga (resultados deste trabalho) a serem aplicadas diretamente à rotinas de cálculos analíticos de sistemas completos de ventilação de hidrogeradores. Paralelamente à isso, o cálculo térmico numérico foi executado na simulação do protótipo, a fim de se definir o coeficiente de transferência de calor por convecção.
2

Computational determination of convective heat transfer and pressure drop coefficients of hydrogenerators ventilation system. / Determinação computacional dos coeficientes de transferência de calor por convecção e perda de carga do sistema de ventilação de hidrogeradores.

Claudinei de Moura Altea 29 July 2016 (has links)
The objective of the present work is to determinate the pressure drop and the heat transfer coefficients, normally applied to analytical calculations of hydrogenerators thermal design, obtained by applying numerical calculation (Computational Fluid Dynamics - CFD) and validated by experimental results and field measurements. The object of study is limited to the most important region of the ventilation system (the cooling air ducts of stator core) to get numerical results of heat transfer and pressure drop coefficients, which are impacted mostly by the entrance of air ducts. The numerical calculations considered three-dimensional, steady-state, incompressible and turbulent flow; and were based on the Finite Volume methodology. The turbulent flow computations were carried out with procedures based on RANS equations by selecting k-omega SST (Shear-Stress Transport) as turbulence model. Grid quality metrics were monitored and the uncertainties due to discretization errors were evaluated by means of a grid independence study and application of an uncertainty estimation procedure based on Richardson extrapolation. The validation of numerical method developed by the present work (specifically to simulate the flow dynamics behavior and to obtain numerically the pressure drop coefficient of the airflow to enter and pass through the Stator Core Air Duct in a hydrogenerator) is performed by comparing the numerical results to experimental data published by Wustmann (2005). The reference experimental data were obtained by a model test. The comparison between numerical and experimental results shows that the difference of pressure drop for Reynolds numbers higher than 5000 is 2% at maximum, while for lower Reynolds numbers, the difference increases significantly and reaches 10%. It is presented that the most reasonable hypothesis for higher discrepancy at lower Reynolds numbers can be assigned to the experiment\'s non-steady-state condition. It is to conclude that the proposed numerical method is validated for the upper region of the analyzed range. Additionally to the model test validation, field measurements were executed in order to confirm numerical results. Measurements of pressure drop in the stator core of a real hydrogenerator were a challenge. Nevertheless, despite all the difficulties and considerable high field measuring uncertainties, trend curves behavior are similar to numerical results. Finally, series of numerical calculation, varying geometrical parameters of the air-duct inlet design and operational data, were done in order to obtain pressure drop coefficients trend curves to be directly applied to analytical calculation routines of whole hydrogenerator ventilation systems. Parallel to it, thermal numerical calculation was executed in the prototype simulation in order to define the convective heat transfer coefficient. / O objetivo do presente trabalho é determinar os coeficientes de perda de carga e transferência de calor, normalmente aplicados nos cálculos analíticos de design térmico de hidrogeradores, obtido pela aplicação de cálculo numérico (Computacional Fluid Dynamics - CFD) e validado por resultados experimentais e medições de campo. O objeto de estudo é limitado à região mais importante do sistema de ventilação (os dutos de ar de arrefecimento do núcleo do estator) para obter resultados numéricos dos coeficientes de transferência de calor e de perda de carga, que são impactados principalmente pela entrada de dutos de ar. Os cálculos numéricos consideraram escoamentos tridimensionais, em regime permanente, incompressíveis e turbulentos; e foram baseados no método dos volumes finitos. Os cálculos de escoamento turbulento foram realizados com procedimentos baseados em equações médias (RANS), utilizando o modelo k-omega SST (Shear-Stress Transport) como modelo de turbulência. Métricas de qualidade de malha foram monitoradas e as incertezas devido à erros de discretização foram avaliadas por meio de um estudo de independência de malha e aplicação de um procedimento de estimativa de incertezas com base na extrapolação de Richardson. A validação do método numérico desenvolvido pelo presente trabalho (especificamente para simular o comportamento dinâmico do escoamento e obter numericamente o coeficiente de perda de carga do escoamento ao entrar no duto de ar e atravessar o núcleo do estator de um hidrogerador) é realizada comparando os resultados numéricos com dados experimentais publicados por Wustmann (2005). Os dados experimentais foram obtidos como referência por um teste de modelo. A comparação entre os resultados numéricos e experimentais mostra que a diferença da perda de carga para números de Reynolds mais elevados do que 5000 é no máximo de 2%, enquanto que para números de Reynolds inferiores, a diferença aumenta significativamente e atinge 10%. A hipótese mais razoável para a maior discrepância para número de Reynolds menores é a possível influência de instabilidades do escoamento no experimento, fazendo com que o regime seja não-permanente. Conclui-se que o método numérico proposto é validado para a região superior do intervalo analisado. Além da validação pelo ensaio de modelo, medições de campo foram executadas, a fim de confirmar os resultados numéricos. As medições de perda de carga no núcleo do estator de um hidrogerador real era um desafio. No entanto, apesar de todas as dificuldades e consideráveis incertezas da medição campo, o comportamento das curvas de tendência ficou alinhado com resultados numéricos. Finalmente, uma série de cálculos numéricos, variando parâmetros geométricos do design da entrada do duto de ar e dados operacionais, foram executados a fim de se obter curvas de tendência para coeficientes de perda de carga (resultados deste trabalho) a serem aplicadas diretamente à rotinas de cálculos analíticos de sistemas completos de ventilação de hidrogeradores. Paralelamente à isso, o cálculo térmico numérico foi executado na simulação do protótipo, a fim de se definir o coeficiente de transferência de calor por convecção.
3

Avaliação da qualidade da energia elétrica em um campus universitário

Silva, Laura Chiovato 05 December 2014 (has links)
The development and expansion of the federal universities throughout the past years, due to the plans of expansion implemented with the funds from REUNI (The program of supporting for the restructuring and expansion of Federal Universities), suggest the necessity of improving the electrical installations of these institutions in order to meet the new power demand in a planned and efficient way. The subject which is related to the growing costs of electrical energy and investments in electrical installations in teaching institutions, faced with its economic relevance, represents, nowadays, an extremely relevant theme. Therefore, currently, it is possible to observe efforts directed to enhance the procedure of quality and efficiency diagnosis of the electrical energy of a campus. Embedded in this context is this dissertation, which is linked to a measurement plan, analysis methods and data comparison with reference values and the use of tools for modeling and computer simulation. This way, the present work presents four different kinds of contribution to the current state-of-the-art. The first contribution is associated to the obtention of typical charge curves and tax modal analysis chart which seem to be most adequate for a university campus. The second contribution is associated to the methodology of data analysis and the installation diagnosis in terms of power quality. As a third contribution of this work, we have the modeling of the electrical system of installation with the use of the ATP (Alternative Transients Program) computer tool. As a final contribution one can highlight the computer modeling and simulation to identify the harmonic contributions both to the local power utility and to the campus installations, together with the point of common coupling. The obtained results show that the methodology in use is very useful in the daily management of the processes associated with the use of the electrical energy in the installations of a university. / O crescimento e a modernização da carga das universidades federais ao longo dos últimos anos, em função de seus planos de expansão propostos e financiados com recursos do Programa de Apoio a Planos de Reestruturação e Expansão das Universidades Públicas (REUNI), sugerem a melhoria das instalações elétricas destas instituições para atender as novas demandas de energia elétrica de forma planejada e eficiente. O assunto relacionado aos crescentes custos com a energia elétrica e investimentos nas instalações elétricas em instituições de ensino, diante da sua relevância econômica, representa, na atualidade, tema de extrema importância. Por conseguinte, constata-se, no momento, esforços direcionados para melhor consubstanciar os procedimentos de um diagnóstico de eficiência e qualidade da energia elétrica de um campus universitário. Nesse contexto se insere a presente dissertação de mestrado, a qual se encontra associada a um plano de medição, a métodos para análise e comparação de dados com valores de referência e ao uso de ferramentas para modelagens e simulações computacionais. Nesse sentido, o presente trabalho apresenta quatro contribuições ao estado da arte atual. A primeira contribuição está associada com a obtenção de curvas de carga típicas e de tabelas de análise da modalidade tarifária mais adequada para um campus universitário. A segunda contribuição do trabalho, por sua vez, está vinculada com a metodologia de análise de dados e de diagnóstico da instalação quanto à qualidade da energia elétrica. Na sequência, como terceira contribuição do trabalho, tem-se a modelagem do sistema elétrico da instalação em estudo utilizando-se a ferramenta computacional ATP (Alternative Transients Program). Finalmente, propõe-se uma modelagem e simulação computacional para identificar as contribuições harmônicas tanto da concessionária de energia elétrica local quanto das instalações do campus, junto ao ponto de entrega de energia elétrica. Os resultados obtidos mostram que as metodologias utilizadas são de grande utilidade na gestão diária dos processos associados ao uso da energia elétrica nas instalações de uma universidade. / Mestre em Ciências

Page generated in 0.0788 seconds