• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 239
  • 28
  • 12
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 334
  • 334
  • 215
  • 139
  • 131
  • 92
  • 78
  • 72
  • 70
  • 59
  • 55
  • 50
  • 36
  • 34
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Medical Image Segmentation by Transferring Ground Truth Segmentation

Vyas, Aseem January 2015 (has links)
The segmentation of medical images is a difficult task due to the inhomogeneous intensity variations that occurs during digital image acquisition, the complicated shape of the object, and the medical expert’s lack of semantic knowledge. Automated segmentation algorithms work well for some medical images, but no algorithm has been general enough to work for all medical images. In practice, most of the time the segmentation results are corrected by the experts before the actual use. In this work, we are motivated to determine how to make use of manually segmented data in automatic segmentation. The key idea is to transfer the ground truth segmentation from the database of train images to a given test image. The ground truth segmentation of MR images is done by experts. The process includes a hierarchical image decomposition approach that performs the shape matching of test images at several levels, starting with the image as a whole (i.e. level 0) and then going through a pyramid decomposition (i.e. level 1, level 2, etc.) with the database of the train images and the given test image. The goal of pyramid decomposition is to find the section of the training image that best matches a section of the test image of a different level. After that, a re-composition approach is taken to place the best matched sections of the training image to the original test image space. Finally, the ground truth segmentation is transferred from the best training images to their corresponding location in the test image. We have tested our method on a hip joint MR image database and the experiment shows successful results on level 0, level 1 and level 2 re-compositions. Results improve with deeper level decompositions, which supports our hypotheses.
32

Enhanced Approach for the Classification of Ulcerative Colitis Severity in Colonoscopy Videos Using CNN

Sure, Venkata Leela 08 1900 (has links)
Ulcerative colitis (UC) is a chronic inflammatory disease characterized by periods of relapses and remissions affecting more than 500,000 people in the United States. To achieve the therapeutic goals of UC, which are to first induce and then maintain disease remission, doctors need to evaluate the severity of UC of a patient. However, it is very difficult to evaluate the severity of UC objectively because of non-uniform nature of symptoms and large variations in their patterns. To address this, in our previous works, we developed two different approaches in which one is using the image textures, and the other is using CNN (convolutional neural network) to measure and classify objectively the severity of UC presented in optical colonoscopy video frames. But, we found that the image texture based approach could not handle larger number of variations in their patterns, and the CNN based approach could not achieve very high accuracy. In this paper, we improve our CNN based approach in two ways to provide better accuracy for the classification. We add more thorough and essential preprocessing, and generate more classes to accommodate large variations in their patterns. The experimental results show that the proposed preprocessing can improve the overall accuracy of evaluating the severity of UC.
33

Fully Convolutional Networks (FCNs) for Medical Image Segmentation

Zhewei, Wang January 2020 (has links)
No description available.
34

Multiband functional magnetic resonance imaging (fMRI) for functional connectivity assessments

Björnfot, Cecilia January 2018 (has links)
During resting state the brain exhibits synchronized activity within all major brain networks. Using blood oxygen level dependent (BOLD) resting state functional magnetic resonance imaging (fMRI) based detection it is possible to quantify the degree of correlation, connectivity, between regions of interest and assess information regarding the integrity of the inter-regional functional integration. A newly available multiband echo planar imaging (EPI) fMRI sequence allows for faster scan times which possibly allows us to better examine large-scale networks and increase the understanding of brain function/dysfunction. This thesis will assess how the newly developed sequence compares to a conventional EPI sequence for detecting resting state connectivity of canonical brain networks. The data acquisitions were made on a 3 Tesla scanner using a 32 channel head coil. The hypothesis was that the multiband sequence would produce a better result since it has faster sampling rate, thus more data points in its time-series to support the statistical analyses. Using Pearson’s linear correlation between the average time-series (approximately 12 minutes long) within a seed-region and all voxels contained in the image volume, correlation maps where created for each of the eight participants using data normalized to Montreal Neurological Institute (MNI) space. The resting state networks (RSN) were then found by performing a one sample T-test on group level. Six seed-coordinates, based on literature, where used revealing the the homotopic connections in anterior Hippocampus, Motor cortex, Dorsal attention, Visual and the Default mode network (DMN) as well for an anterior-posterior connection in the DMN. By comparing the maximum T-values within the regions for the RSN no systematic difference could be found between the multiband and conventional fMRI data. Further tests were conducted to evaluate if the sequences would differentiate in their results if the acquisition time was shortened, i.e shortening the time-series in the voxels. However no such difference could be established.Importantly, the results are specific to the 32 channel head coil used in the current study. Presumably recently available and improved coil designs could better exploit the multiband technique.
35

Regularity-Guaranteed Transformation Estimation in Medical Image Registration

Shi, Bibo 03 October 2011 (has links)
No description available.
36

Auditory sensory feedback tool to supplement visual data perception in radiologic imaging - a demonstration using Mr Mammography

Chun, Hee 07 August 2006 (has links)
No description available.
37

Multi-Level Learning Approaches for Medical Image Understanding and Computer-aided Detection and Diagnosis

Tao, Yimo 01 June 2010 (has links)
With the rapid development of computer and information technologies, medical imaging has become one of the major sources of information for therapy and research in medicine, biology and other fields. Along with the advancement of medical imaging techniques, computer-aided detection and diagnosis (CAD/CADx) has recently emerged to become one of the major research subjects within the area of diagnostic radiology and medical image analysis. This thesis presents two multi-level learning-based approaches for medical image understanding with applications of CAD/CADx. The so-called "multi-level learning strategy" relies on that supervised and unsupervised statistical learning techniques are utilized to hierarchically model and analyze the medical image content in a "bottom up" way. As the first approach, a learning-based algorithm for automatic medical image classification based on sparse aggregation of learned local appearance cues is proposed. The algorithm starts with a number of landmark detectors to collect local appearance cues throughout the image, which are subsequently verified by a group of learned sparse spatial configuration models. In most cases, a decision could already be made at this stage by simply aggregating the verified detections. For the remaining cases, an additional global appearance filtering step is employed to provide complementary information to make the final decision. This approach is evaluated on a large-scale chest radiograph view identification task and a multi-class radiograph annotation task, demonstrating its improved performance in comparison with other state-of-the-art algorithms. It also achieves high accuracy and robustness against images with severe diseases, imaging artifacts, occlusion, or missing data. As the second approach, a learning-based approach for automatic segmentation of ill-defined and spiculated mammographic masses is presented. The algorithm starts with statistical modeling of exemplar-based image patches. Then, the segmentation problem is regarded as a pixel-wise labeling problem on the produced mass class-conditional probability image, where mass candidates and clutters are extracted. A multi-scale steerable ridge detection algorithm is further employed to detect spiculations. Finally, a graph-cuts technique is employed to unify all outputs from previous steps to generate the final segmentation mask. The proposed method specifically tackles the challenge of inclusion of mass margin and associated extension for segmentation, which is considered to be a very difficult task for many conventional methods. / Master of Science
38

A Global Linear Optimization Framework for Adaptive Filtering and Image Registration

Johansson, Gustaf January 2015 (has links)
Digital medical atlases can contain anatomical information which is valuable for medical doctors in diagnosing and treating illnesses. The increased availability of such atlases has created an interest for computer algorithms which are capable of integrating such atlas information into patient specific dataprocessing. The field of medical image registration aim at calculating how to match one medical image to another. Here the atlas information could give important hints of which kinds of motion are plausible in different locations of the anatomy. Being able to incorporate such atlas specific information could potentially improve the matching of images and plausibility of image registration - ultimately providing a more correct information on which to base health care diagnosis and treatment decisions. In this licentiate thesis a generic signal processing framework is derived : Global Linear Optimization (GLO). The power of the GLO framework is first demonstrated quantitatively in a very high performing image denoiser. Important proofs of concepts are then made deriving and implementing three important capabilities regarding adaptive filtering of vector fields in medica limage registration: Global regularization with local anisotropic certainty metric. Allowing sliding motion along organ and tissue boundaries. Enforcing an incompressible motion in specific areas or volumes. In the three publications included in this thesis, the GLO framework is shown to be able to incorporate one each of these capabilities. In the third and final paper a demonstration is made how to integrate more and more of the capabilities above into the same GLO to perform adaptive processing on relevant clinical data. It is shown how each added capability improves the result of the image registration. In the end of the thesis there is a discussion which highlights the advantage of the contributions made as compared to previous methods in the scientific literature. / Dynamic Context Atlases for Image Denoising and Patient Safety
39

Image Similarity Scoring for Medical Images in 3D

Castenbrandt, Felicia January 2022 (has links)
Radiologists often have to look through many different patients and examinations in quick succession, and to aid in the workflow the different types of images should be presented for the radiologist in the same manner and order between each new examination. Thus decreasing the time needed for the radiologist to either find the correct image or rearrange the images to their liking. A step in thisprocess requires a comparison between two images to be made and produce a score between 0-1 describing how similar the images are. A similar algorithm already exists at Sectra, but that algorithm only uses the metadata from the images without considering the actual pixel data. The aim of this thesis were to explore different methods of doing the same comparison as the previous algorithm but only using the pixel data. Considering only 3D volumes from CT examinations of the abdomen and thorax region, this thesis explores the possibility of using SSIM, SIFT and SIFT together with a histogram comparison using the Bhattacharyya distance for this task. It was deemed very important that the ranking produced when ordering the images in terms of similarity to one reference image followed a specific order. This order was determined by consulting personnel at Sectra that works closely with the clinical side of radiology. SSIM were able to differentiate between different plane orientations since they usually had large resolution differences in each led, but it could not be made tofollow the desired ranking and was thus disregarded as a reliable option for this problem. The method using SIFT followed the desired ranking better, but struggled a lot with differentiating between the different contrast phases. A histogram component were also added to this method, which increased the accuracy and improved the ranking. Although, further development is still needed for thismethod to be a reliable option that could be used in a clinical setting.
40

Medical Image Segmentation using Attention-Based Deep Neural Networks / Medicinsk bildsegmentering med attention-baserade djupa neurala nätverk

Ahmed, Mohamed January 2020 (has links)
During the last few years, segmentation architectures based on deep learning achieved promising results. On the other hand, attention networks have been invented years back and used in different tasks but rarely used in medical applications. This thesis investigated four main attention mechanisms; Squeeze and Excitation, Dual Attention Network, Pyramid Attention Network, and Attention UNet to be used in medical image segmentation. Also, different hybrid architectures proposed by the author were tested. Methods were tested on a kidney tumor dataset and against UNet architecture as a baseline. One version of Squeeze and Excitation attention outperformed the baseline. Original Dual Attention Network and Pyramid Attention Network showed very poor performance, especially for the tumor class. Attention UNet architecture achieved close results to the baseline but not better. Two more hybrid architectures achieved better results than the baseline. The first is a modified version of Squeeze and Excitation attention. The second is a combination between Dual Attention Networks and UNet architecture. Proposed architectures outperformed the baseline by up to 3% in tumor Dice coefficient. The thesis also shows the difference between 2D architectures and their 3D counterparts. 3D architectures achieved more than 10% higher tumor Dice coefficient than 2D architectures.

Page generated in 0.041 seconds