• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 871
  • 767
  • 262
  • 126
  • 8
  • 7
  • 7
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 3041
  • 3041
  • 1361
  • 1337
  • 986
  • 986
  • 984
  • 984
  • 495
  • 477
  • 339
  • 339
  • 236
  • 197
  • 190
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Motor and Sensory Characterization of a Mouse Model of Charcot-Marie-Tooth Type 2O Disease

Nandini, Swaran 01 May 2019 (has links)
Dynein is an essential motor protein required for the maintenance and survival of cells. Dynein forms a motor complex to carry intracellular cargoes like organelles, growth factors, peptides, and hormones along the microtubules inside the cells. In neurons, the dynein is the retrograde motor protein that moves cargoes from the neuronal tip to the neuronal soma along the length of an axon. Dynein has an established role in neuronal nuclear migration, transport of neuronal survival signals and growth factors, organelle positioning inside neurons etc. Hence, it is not very surprising that numerous mutations in dynein have been reported in association with neurodegenerative diseases in humans. The first human mutation (H306R) in dynein heavy chain was reported to cause Charcot-Marie-Tooth Type 2O disease (CMT2O) in humans. CMT2O patients display motor-sensory neuropathy symptoms such as muscle weaknesses and wasting in legs, skeletal deformities like pes cavus (high foot arching), difficulty in walking, and a loss of sensation. We developed a novel knock-in H304R mouse model with the corresponding CMT2O linked dynein mutation to understand the disease's molecular mechanism. We investigated and characterized the motor-sensory phenotype of the H304R mouse model (wildtype, heterozygous (H304R/+) and homozygous (H304R/R) mice). First, we started with testing mice on motor skills behavior tests such as tail suspension reflex, grip strength test, and rotarod test at 3, 6, 9 and 12 months of age. Both male and female groups of heterozygous (H304R/+) mice displayed mild defects in tail suspension reflex, grip strength, and rotarod performance. In contrast, homozygous (H304R/R) mice exhibited severe defects in the tail suspension reflex, grip strength, and rotarod performance right from an early age. Next, I analyzed the sensory phenotype of the H304R mouse model. Homozygous H304R/R mice appeared to have thinner sciatic nerves, reduced total fascicular area of the sciatic nerve, and significantly quicker latency to tail withdrawal from a pain stimulus than the wildtype and heterozygous H304R/+ mice. Collectively, our motor and sensory characterization studies reveal that H304R dynein mouse model recapitulates many of the phenotypes associated with CMT symptoms. Hence, the H304R model is a useful tool in understanding the dynein function in the onset and progression of CMT2O in humans.
262

The Role of SOD1 Acetylation in Neurodegeneration

Kaliszewski, Michael 01 January 2016 (has links)
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder affecting motor neurons. Cu, Zn superoxide dismutase (SOD1), a cytoplasmic free radical scavenging enzyme, is mutated in familial ALS (fALS) and post-translational modification of the wild-type protein has been associated with sporadic ALS (sALS). Proteomic studies indicate that SOD1 is acetylated at Lys123; however, the role of this modification remains unknown. To investigate its function, we generated antibodies for Lys123-acetylated SOD1 (Ac-K123 SOD1). Sod1 deletion in Sod1-/- mice, K123 mutation, or preabsorption with Ac-K123 peptide suppressed immunoreactivity, confirming antibody specificity. In the normal central nervous system, Ac-K123 SOD1 maps to glutamatergic neurons of the cerebellar cortex, dentate gyrus, hippocampus, olfactory bulb, and retina. In cultured neurons, Ac-K123 SOD1 localized to defined regions of axons and dendrites. Previous studies have suggested a role for SOD1 in cell cycle regulation. Therefore, we tested the distribution of Ac-K123 SOD1 during the cell cycle of astrocytes. In G1 Ac-K123 SOD1 localized to the nucleus, in G0 to the primary cilium, in metaphase and anaphase to chromosomes, and in telophase to the midbody. The deacetylase HDAC6 and acetyl-transferase ?-TAT1 are associated with the primary cilium. Therefore, we tested whether they regulate reversible acetylation of SOD1. HDAC6 knockdown or pharmacological inhibition markedly increased, while HDAC6 overexpression decreased, SOD1 Lys123 acetylation. By contrast, SOD1 Lys123 acetylation was decreased by ?-TAT1 knockdown and increased by ?-TAT1 overexpression. These results suggest that HDAC6 and ?-TAT1 regulate SOD1 Lys123 acetylation. Next, we examined Lys123 acetylation in fALS SOD1 mutants. Remarkably, Lys123 acetylation was dramatically increased in fALS mutants including SOD1 A4V. The acetyl-Lys123 mimetic of wild-type SOD1 caused axonal transport deficits similar to those observed in SOD1 pathogenic mutants such as A4V. Interestingly, HDAC6 deacetylation or acetylation resistance by Lys123 mutation, abolished A4V protein misfolding, axonal transport defects, and neuronal cell death. These results suggest that Lys123 acetylation plays a key role in the neurotoxicity of fALS mutants and may have implications in sALS. Because Ac-K123 SOD1 maps to the primary cilium, we examined whether ciliogenesis is altered in fALS mutant SOD1 astrocytes. Strikingly, fALS mutants caused centriole and primary cilia proliferation with ciliary ectosome secretion. Notably, multiciliated ependymal cells in the brain ventricles and spinal cord central canal, which are critical for cerebral spinal fluid circulation, stained strongly for Ac-K123 SOD1. Thus, we speculate that ciliary ectosome shedding from ependymal cells accounts for the presence of misfolded SOD1 in the CSF in fALS and perhaps sALS. In summary, we identified SOD1 Lys123 acetylation as a novel mechanism underlying protein misfolding and neurodegeneration in ALS. Ac-K123 SOD1 may emerge as novel target for the diagnosis and treatment of ALS.
263

AB Toxins: Recovery from Intoxication and Relative Potencies

Cherubin, Patrick 01 January 2019 (has links)
AB-type protein toxins have a catalytic A subunit attached to a cell-binding B subunit. Ricin, Shiga toxin (Stx), exotoxin A, and diphtheria toxin are AB toxins that act within the host cytosol and kill the host cell through pathways involving the inhibition of protein synthesis. Our overall goal is to help elucidate the cellular basis of intoxication for therapeutic development. According to the current model of intoxication, the effect of AB toxins is irreversible. To test this model, we developed a system that uses flow cytometry and a fluorescent reporter to examine the cellular potency of toxins that inhibit protein synthesis. Our data show that cells can recover from intoxication: cells with a partial loss of protein synthesis will, upon removal of the toxin, increase the level of protein production and survive the toxin exposure. This work challenges the prevailing model of intoxication by suggesting ongoing toxin delivery to the cytosol is required to maintain the inhibition of protein synthesis and ultimately cause apoptosis. We also used our system to examine the basis for the greater cellular potency of Stx1 in comparison to Stx2. We found that cells intoxicated with Stx1a behave differently than those intoxicated with Stx2: cells exposed to Stx1a exhibited a population-wide loss of protein synthesis, while cells exposed to Stx2a or Stx2c exhibited a dose-dependent bimodal response in which one subpopulation of cells was unaffected (i.e., no loss of protein synthesis). Additional experiments indicated the identity of the Stx B subunit is a major factor in determining the uniform vs. bimodal response to Stx subtypes. This work provides evidence explaining, in part, the differential toxicity between Stx1 and Stx2. Overall, our collective observations provide experimental support for the development of inhibitors and post-exposure therapeutics that restrict, but not necessarily block, toxin delivery to the host cell.
264

Unraveling PDI and its Interaction with AB Toxins

Guyette, Jessica 01 January 2019 (has links)
Protein disulfide isomerase (PDI) is an essential endoplasmic reticulum (ER) protein that acts as both an oxidoreductase and chaperone. It exhibits substantial flexibility and undergoes cycles of unfolding and refolding in its interaction with cholera toxin (Ctx), which is a unique property of PDI. This unfolding allows PDI to disassemble the Ctx holotoxin, which is required for Ctx activity. Here, we investigated the unfolding and refolding property of PDI and how this affects its interaction with bacterial toxins. PDI showed remarkable redox-linked conformational resilience that allows it to refold after being thermally stressed. Deletion constructs of PDI showed that both active domains play opposing roles in stability, and can both refold from an unfolded state, indicating that either domain could unfold during its interaction with Ctx. Its ability to refold suggests that the cycle of unfolding and refolding with Ctx is a normal mechanism that prevents protein aggregation. Disruption of this cycle with the polyphenol, quercetin-3-rutinoside, prevented the disassembly of Ctx, which blocked Ctx intoxication of cultured cells. Loss of PDI function was also found to inhibit intoxication with Escherichia coli heat-labile toxin but not with ricin and Shiga toxins. Toxin structure also contributes to efficiency of PDI binding and disassembly, which may explain the differential potencies between toxins. While Ctx and Ltx share similar structures, Ctx is more potent and efficiently disassembled compared to Ltx. We believe that PDI-mediated disassembly is the rate-limiting step in intoxication, thus dictating toxin potency. Overall, PDI can be targeted for a potential therapeutic for many bacterial toxins because of its unique unfolding properties and its key role in cell intoxication.
265

A Cytoplasmic-Replicating RNA Virus Sensitizes Cancer Cells to DNA Modifying Agents

Fox, Candace 01 January 2019 (has links)
The Parainfluenza virus 5 (PIV5) mutant P/V-CPI- is restricted for spread in normal cells but not in cancer cells in vitro and is effective at reducing tumor burden in mouse model systems. Here we show that P/V-CPI- infection of human laryngeal cancer HEp-2 cells resulted in the majority of the cells dying, but unexpectedly, a population of cells emerged as P/V-CPI- persistently infected (PI) cells. P/V-CPI- PI cells had elevated levels of basal caspase activation, and viability was highly dependent on activity of cellular inhibitors of apoptosis, such as Survivin. In challenge experiments with external inducers of apoptosis, the PI cells were highly sensitive to cisplatin-induced DNA damage and cell death. This increased cisplatin sensitivity correlated with defects in the phosphorylation cascade controlling DNA damage signaling pathways, as well as translocation of damage-specific DNA binding protein 1 (DDB1) to the nucleus. Similar sensitivity to cisplatin was seen with cells during acute infection with P/V-CPI-, as well as acute infections with WT PIV5. Based on this finding, we tested the hypothesis that histone deacetylase (HDAC) inhibitors would also act with P/V-CPI- infection to enhance cancer cell killing. Using human lung and laryngeal cancer cell lines, 10 HDAC inhibitors were tested for their effect on viability of P/V-CPI- infected cells. HDAC inhibitors such as scriptaid enhanced caspase-3/7, -8 and -9 activity induced by P/V-CPI- and overall cell toxicity. Scriptaid treatment also enhanced the spread of P/V-CPI- through a population of cancer cells and suppressed interferon-beta induction through blocking phosphorylation and nuclear translocation of Interferon Regulatory Factor 3 (IRF-3). These results support a therapeutic approach of combining parainfluenza infection and chemotherapy, but also raise questions on the mechanism by which a cytoplasmic-replicating RNA virus can alter cellular DNA damage responses.
266

Multi-target High-throughput Screening Assays for Antimicrobial Drug Discovery

Grube, Christopher 01 January 2019 (has links)
The rise of antibiotic resistant microbes (bacteria, fungi, and parasites), combined with the current void of new drugs entering the clinical setting, has created an urgent need for the discovery of new antimicrobials. High-throughput screening (HTS) assays represent a fast and cost-efficient method for identifying new therapeutic compounds and have been the longstanding gold standard for drug discovery. The focus of this dissertation is on the development and implementation of novel methodologies to increase the throughput of target-based HTS by designing assays that allow multiple drug targets to be probed simultaneously. During my graduate studies, I developed three distinct HTS assays. In each of these assays, drug targets were incorporated into synthetic pathways obeying various reaction topologies (e.g., cyclical, parallel, or linear). Each of these reaction topologies conferred specific advantages and limitations to the individual assays. The first assay reconstitutes the bacterial tRNA-dependent pathway for lipid aminoacylation. This two-step pathway combines a tRNA aminoacylation step catalyzed by an aminoacyl-tRNA synthetase (aaRS), and a transferase step, which transfers the amino acid born by the tRNA onto membrane lipids. aaRSs are essential enzymes in all domains of life and represent longstanding drug targets in pathogenic species. The transferase reaction in the pathway is also an appealing drug target since it impacts the cellular permeability of antibiotics. Inhibitors of this reaction could dramatically increase the efficacy of existing therapeutics. The second assay I developed also targets aaRSs, but utilizes a parallel topology that permits the probing of the synthetic and editing activities of up to four aaRSs simultaneously. The third assay utilizes a linear topology that reconstitutes the entire purine salvage pathway from Plasmodium falciparum. Because parasites are unable to synthesize purines de novo, this pathway represents an appealing target for novel antimalarials. Pilot screens using this assay revealed inhibitors for multiple enzymes in the pathway, validating the design of the system. This body of work aims to shift the current paradigm of single-target systems that have historically dominated the HTS field, toward multi-target designs that can be used to more efficiently screen compound libraries against essential pathways in pathogenic microbes.
267

It Takes Two to Tango: The Toxin-chaperone Relationship

Kellner, Alisha 01 January 2019 (has links)
Cholera toxin (CT) enters the cell via receptor-mediated endocytosis and travels in a retrograde fashion to the endoplasmic reticulum (ER). The catalytic A1 subunit (CTA1) is then displaced from the rest of the holotoxin, unfolds, and is exported to the cytosol where it regains an active conformation for the ADP-ribosylation of its G-protein target. We have shown that the cytosolic chaperones Hsp90 and Hsc70 are required for CTA1 translocation to the cytosol. We have also shown that both are able to independently bind and refold CTA1. Using libraries of CTA1-derived peptides, we have identified a single Hsc70 binding site, YYIYVI (CTA1 83-88), within the 192 amino acid protein, as well as two distinct Hsp90 binding sites: an N-terminal RPPDEI (CTA111-16) motif and a C-terminal LDIAPA (CTA1 153-158) motif. The LDIAPA motif is unique to CTA1, but an RPPDEI-like motif is present in four other ER-translocating ADP-ribosylating toxins: pertussis toxin, Pseudomonas aeruginosa exotoxin A, Escherichia coli heat-labile toxin, and Salmonella typhimurium ADP-ribosylating toxin. Using site-directed mutagenesis to further investigate the RPPDEI motif, we found that a modification of either proline residue blocks CTA1 translocation to the cytosol. Our work has identified, for the first time, specific amino acid sequences that are recognized by Hsp90/Hsc70 and are essential for toxin translocation from the ER to the cytosol. CT does not require prolyl isomerases for cellular activity, as is the case for Hsp90-dependent endosome-translocating toxins. We therefore hypothesize that the one or both of the prolines within the RPPDEI motif of CTA1 undergo an isomerization event as CTA1 unfolds in the ER. Furthermore, we predict that the trans- to cis- conformational change of proline(s) is the molecular determinate for the atypical Hsp90 interaction observed with CTA1 and related toxins. Additionally, we have identified Hsp90 and other host factors required for the translocation of pertussis toxin.
268

Patterned Cell Cultures For High Throughput Studies Of Cell Electrophysiology And Drug Screening Applications

Natarajan, Anupama 01 January 2010 (has links)
Over the last decade, the field of tissue and bio-engineering has seen an increase in the development of in vitro high-throughput hybrid systems that can be used to understand cell function and behavior at the cellular and tissue levels. These tools would have a wide array of applications including for implants, drug discovery, and toxicology, as well as for studying cell developmental behavior and as disease models. Currently, there are a limited number of efficient, functional drug screening assays in the pharmacology industry and studies of cell-surface interactions are complicated and invasive. Most cell physiology studies are performed using conventional patch-clamp techniques or random networks cultured on silicon devices such as Microelectrode Arrays (MEAs) and Field Effect transistors (FETs). The objective of this study was to develop high-throughput in vitro platforms that could be used to analyze cell function and their response to various stimuli. Our hypothesis was that by utilizing surface modification to provide external guidance cues for various cell types and by controlling the cell environment in terms of culture conditions, we could develop an in vitro hybrid platform for sensing and testing applications. Such a system would not only give information regarding the surface effects on the growth and behavior of cells for implant development applications, but also allow for the study of vital cell physiology parameters like conduction velocity in cardiomyocytes and synaptic plasticity in neuronal networks. This study outlines the development of these in vitro high throughput systems that have varied applications ranging from tissue engineering to drug development. We have developed a simple and relatively high-throughput method in order to test the physiological effects of varying iii chemical environments on rat embryonic cardiac myocytes in order to model the degradation effects of polymer scaffolds. Our results, using our simple test system, are in agreement with earlier observations that utilized a complex 3D biodegradable scaffold. Thus, surface functionalization with self-assembled monolayers combined with histological/physiological testing could be a relatively high throughput method for biocompatibility studies and for the optimization of the material/tissue interface in tissue engineering. Traditional multielectrode extracellular recording methods were combined with surface patterning of cardiac myocyte monolayers to enhance the information content of the method; for example, to enable the measurement of conduction velocity, refractory period after action potentials or to create a functional reentry model. Two drugs, 1-Heptanol, a gap junction blocker, and Sparfloxacin, a fluoroquinone antibiotic, were tested in this system. 1-Heptanol administration resulted in a marked reduction in conduction velocity, whereas Sparfloxacin caused rapid, irregular and unsynchronized activity, indicating fibrillation. As shown in these experiments, the patterning of cardiac myocyte monolayers increased the information content of traditional multielectrode measurements. Patterning techniques with self-assembled monolayers on microelectrode arrays were also used to study the physiological properties of hippocampal networks with functional unidirectional connectivity, developed to study the mono-synaptic connections found in the dentate gyrus. Results indicate that changes in synaptic connectivity and strength were chemically induced in these patterned hippocampal networks. This method is currently being used for studying long term potentiation at the cellular level. For this purpose, two cell patterns were optimized for cell migration onto the pattern as demonstrated by time lapse studies, and for iv supporting the best pattern formation and cell survival on these networks. The networks formed mature interconnected spiking neurons. In conclusion, this study demonstrates the development and testing of in vitro highthroughput systems that have applications in drug development, understanding disease models and tissue engineering. It can be further developed for use with human cells to have a more predictive value than existing complex, expensive and time consuming methods.
269

Targeted Therapy Development for Neurofibromatosis Type 2

Fuse, Marisa 01 January 2017 (has links)
Neurofibromatosis type 2 (NF2) is a debilitating disease characterized by the formation of bilateral vestibular schwannomas, which compress the vestibulocochlear nerve and cause deafness. Additional peripheral schwannomas, meningiomas and ependymomas may also form. NF2 is caused by mutations in the NF2 gene, resulting in the loss of function of the merlin tumor suppressor. Merlin functions in multiple signaling pathways and its absence in Schwann cells yields increased cell survival and proliferation, thereby causing schwannoma formation. First line treatment for NF2 is watchful waiting and surgical removal of tumors, potentially resulting in facial paralysis and deafness. To date, there are no pharmacological options for patients with NF2. Since the first clinical trials were completed in 2012, only 5 drugs have been investigated in NF2 patients. Few drugs have elicited a measurable radiographic tumor response and most only result in temporary hearing improvement in a small subset of patients. Development of novel therapeutic compounds is a slow, expensive process. However, re-purposing FDA-approved drugs for NF2 accelerates the transfer of efficacious drugs to the clinic. This dissertation used a systematic approach to identify drugs capable of reducing NF2-associated schwannoma growth. An initial screen revealed drugs that reduced viability of mouse and human merlin-deficient Schwann cells. Efficacious drugs were then advanced to an allograft mouse model of NF2 to identify those that reduced tumor growth in vivo. Drug efficacy was also examined in human primary schwannoma cells. We showed that Src, c-MET and MEK inhibitors reduced viability of merlin-deficient Schwann cells both in vitro and in vivo. We also identified a combination treatment of Src and c-MET inhibitors that induced apoptosis, suggesting the potential for preventing tumor recurrence after completion of drug treatment. The work presented here provides valuable pre-clinical evidence for the advancement of several approved drugs to clinical trials for NF2-associated schwannomas.
270

Attenuation Correction in Positron Tomography

Yu, Ki Siu January 1996 (has links)
<p>Accurate attenuation correction is a prerequisite for the determination of precise regional radioactivity concentrations in positron tomography. Attenuation correction can be performed using an external source of radiation and two measurements: a blank scan performed with no subject in the tomograph, and a transmission scan performed with the subject in the field of view. The ratio of blank to transmission counts gives the appropriate attenuation correction factor for each line of response. In theory, this provides a perfect correction for photon attenuation, but in practice the technique is limited by noise due to limited counting statistics and scattered radiation in the measured transmission data.</p> <p>In the present work, ¹³⁷Cs is proposed as a suitable radiation source for transmission measurements in 'singles' mode, a technique that substantially increases the statistical accuracy of the transmission data. ¹³⁷Cs can be used without any recalibration of the tomograph, and the spatial resolution is comparable to that obtained using ⁶⁸Ge. Since ¹³⁷Cs emits a monoenergetic gamma ray at 662 keV, and emission data are acquired by detecting annihilation photons of energy 511 keV, a simple extrapolation method is developed to extrapolate the attenuation coefficients measured at 662 keV to 511 keV. To eliminate scatter contamination in the transmission data, a dual-energy-window scatter correction technique is developed whereby correction can be made on-the-fly during data acquisition. Using the developed extrapolation method and dual energy scatter correction method, the linear attenuation coefficients measured in 'singles' mode using ¹³⁷Cs agree well with the expected values.</p> <p>To achieve further suppression of noise in the transmission data, a segmented attenuation correction technique is also developed in this work. The technique uses artificial neural networks for processing the count-limited transmission data. The technique has been validated in phantoms and verified in human studies. The results indicate that attenuation coefficients measured in the segmented transmission images are accurate and reproducible. Activity concentrations measured in the reconstructed emission image can also be recovered accurately with this technique. The accuracy of the technique is subject independent and insensitive to scatter contamination in the transmission data. It can predict accurately the value of the attenuation coefficient for any material in the range from air to water. Satisfactory results are obtained if the transmission data contains as few as 400,000 true counts per plane. Thus, accurate attenuation data can be obtained by acquiring a short transmission scan using the 'singles' method, and then processing these data using the artificial neural network technique.</p> / Doctor of Philosophy (PhD)

Page generated in 0.0751 seconds