• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Image Analytic Tools for Optical Coherence Tomography Tissue Characterization and Robust Learning

Huang, Ziyi January 2023 (has links)
The computer-aided analysis is poised to play an increasingly prominent role in medicine and healthcare. Benefiting from the increasing computing power, various machine learning frameworks have been developed in the biomedical field, bringing significant improvements in real-world clinical applications. However, for many diseases, the development of these life-supporting algorithms is still in its infancy. To bridge this gap: This thesis is dedicated to the development of efficient algorithms for better image intervention and addressing data quality challenges in machine learning algorithms to provide direct guidance for real-world clinical applications. With the above goals, three topics are explored in depth. First, we develop a novel tissue analysis framework for cardiac substrate identification and tissue heterogeneity assessment. In particular, we creatively used model uncertainty to measure tissue structure information, offering a means of extracting the tissue heterogeneity information in a non-invasive way for real-time imaging and processing. The tissue analysis framework in the first aim is based on the fully supervised technique, which relies heavily on the availability of large-scale datasets with accurate annotations. Such high-quality datasets are extremely time-consuming to acquire, especially for biomedical segmentation tasks. To lessen the need for the labeling process, we further develop three weakly supervised learning frameworks to address data and labeling challenges caused by limited data resources. Finally, we develop an in-vivo tissue analysis framework on cardiac datasets, aiming to provide real-time guidance for clinical ablation procedures. Our models could contribute to the improvement of ablation treatment by identifying the ablation targets and avoiding critical structures within the hearts.
2

A web accessible clinical patient information networked system

Chang, Andrew Yee 01 January 2006 (has links)
Developed with the intention to make the patient data storage system in the clinical outpatient area more efficient, this system stores all pertinent and relevant patient data such as lab results, patient history and X-ray images. The system is accessible via the internet as well as operable over a local area network (LAN). The intended audience for this program is essentially the clinical staff (e.g., physicians, nursing staff, secretarial staff). The computer program was developed using Java Server Pages (JSP) and utilizes the Oracle 9i database.

Page generated in 0.1135 seconds