• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effects of a Kenyan antidiabetic plant on insulin homeostasis

Suleiman, Khairunisa Yahya January 2009 (has links)
The metabolic disorder diabetes; is a global epidemic affecting people in developed countries and increasingly in developing countries. In two decades time, 350 million people will be diabetic at the current rate of prevalence. In a preliminary study, insulin resistant rats were treated with Prunus Africana (plant A) for 28 days. Plasma samples obtained from P. africana treated rats had increased insulin levels compared to normal and untreated insulin resistant rats (Karachi, 2009). The treatment of insulin resistant rats with P. africana also showed increased glucose uptake in rat adipose tissue (Karachi, 2009), suggesting that P. africana had anti-diabetic properties. The aim of the study was to investigate the mechanism of the anti-diabetic properties of P africana extract. Increased insulin secretion was confirmed by the increased Cpeptide concentration in plasma samples of rats treated with P. africana. In order to explain the high insulin levels, several hypothesis’ were investigated: (1) P. africana may increase insulin secretion in β cells, hence the effect of P. africana on insulin secretion by INS-1 cells was investigated; (2) P. africana may increase insulin secretion by prolonging the half-life of glucagon like peptide-1 (GLP-1) by decreasing dipeptidyl peptidase IV (DPP IV) activity; the effect of P. africana on DPP IV activity was determined spectrophotometrically, (3) P. africana may increase the half-life of insulin in the plasma by decreasing the activity of insulin degrading enzyme (IDE); the effect of P. africana on IDE in rat muscle and spleen samples was investigated. To explain the increased glucose uptake in adipose tissue observed in the previous study two parameters were investigated: (1) increased GLUT4 expression in P. africana treated rats; the effect of P. africana treatment on the expression of glucose transporter 4 (GLUT4) was determined using real-time polymerase chain reaction (RT-PCR), (2) P. africana may increase glucose utilization; the effect of P. africana on glucose utilization was determined in 3T3-L1 cells. The plant extract did not significantly increase insulin secretion by INS-1 cells in the absence of glucose. P. africana decreased DPP IV activity in rat plasma when compared to the untreated insulin resistant rats and this could be a mechanism by which insulin secretion is increased during plant treatment. P. africana decreased IDE activity (however not significantly) when compared to the untreated insulin resistant The effects of a Kenyan antidiabetic plant on insulin homeostasis KY Suleiman VII rats. P. africana appeared to have no effect on GLUT4 expression. The plant appeared to increase glucose utilization in 3T3-L1 cells in the absence of insulin suggesting that P. africana may have insulin like activity. In summary, this study indicates that P. africana is indirectly involved in inhibiting DDPIV. This in turn can increase the half life of GLP-1, which in turn can enhance the secretion of insulin. P. africana increases glucose utilization although there was no evidence that the GLUT 4 transporter has a higher expression in the plant treated rats. Further studies should be conducted to investigate the expression of GLUT1 under the same conditons.
2

Efficacy of selected Kenyan medicinal plants used in the treatment and management of Type II Diabetes

Karachi, Jacqueline January 2009 (has links)
In Kenya, the prevalence of diabetes is estimated at 3-10 percent of the population. These figures could be higher because most type 2 diabetics are diagnosed many years after onset. Out of this number, 15 percent are people below 30 years of age who need prompt education to avoid complications that are associated with diabetes (DMI centre, 2004). Due to inadequate or lack of proper information, most patients especially those with type 2 diabetes are diagnosed through complications. Untreated or poorly managed diabetes is now the leading cause of eye disease and kidney failure in the world. Diabetes is the largest cause of kidney failure in the developed world, and is the fourth leading cause of global death by disease in the world (IDF, 2007). At the Kenyatta National Hospital in Nairobi, Kenya, it is the leading cause of all non-accident related amputations. It is with such statistics in mind and the grim reality of poor and inadequate health services that this research is based. The wide use of selected medicinal plants for the treatment and management of diabetes warrants the further study of these plants for potential use and commercialization. The data obtained can also be invaluable for use and reference when using these plants for medicinal purposes. The medicinal plant studied in the research is widely used in Kenya by many communities and was chosen based on ethno-pharmacological references using traditional medicinal practitioners as well as patient’s recommendations. Different in vitro and in vivo assays were studied to try and elucidate the mechanisms of action as well as the organs targeted during treatment using this plant.

Page generated in 0.0746 seconds