• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 292
  • 162
  • 23
  • 19
  • 9
  • 8
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 599
  • 283
  • 120
  • 97
  • 71
  • 59
  • 45
  • 42
  • 41
  • 34
  • 31
  • 31
  • 30
  • 30
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Melatonin modulates intercellular communication among immortalized rat suprachiasmatic nucleus cells

Cox, Kimberly Yvonne 15 May 2009 (has links)
The mammalian brain contains a regulatory center in the diencephalic region known as the hypothalamus that plays a critical role in physiological homeostasis, and contains a variety of centers for behavioral drives, such as hunger and thirst. Located deep within the hypothalamus is the suprachiasmatic nucleus (SCN), or the master biological clock, that organizes rhythmic physiology and behavior, such that critical events take place at the most appropriate time of the day or night and in the most appropriate temporal, phase relationships. Cell-to-cell communication is essential for conveying inputs to and outputs from the SCN. The goal of the present study was to use an immortalized neural cell line (SCN2.2), derived from the presumptive anlage of the rat suprachiasmatic nucleus, as an in vitro model system to study intercellular communication among SCN cells. I tested whether the pineal neurohormone melatonin could modulate cell-to-cell signaling, via both dye coupling (gap junctional communication) and calcium waves (ATP-dependent gliotransmission). I also tested whether extracellular ATP could influence the spread of calcium waves in SCN2.2 cells. Lastly, the ability of extracellular ATP to modulate SCN physiological responses to melatonin in SCN2.2 cells was examined. I show that melatonin at a physiological concentration (nM) reduced dye coupling (gap junctional communication) in SCN2.2 cells, as determined by a scrape loading procedure employing the fluorescent dye lucifer yellow. Melatonin caused a significant reduction in the spread of calcium waves in cycling SCN2.2 cultures as determined by ratiometric calcium imaging with Fura-2 AM, a calcium sensitive indicator dye. This reduction was greatest when an endogenous circadian rhythm in extracellular ATP accumulation, determined by luciferase assay, was at its trough or lowest extracellular concentration. In addition, melatonin and ATP interacted in the regulation of gliotransmission (calcium waves), and this interaction was also specific to particular phases of the endogenous SCN physiological rhythmicity. Thus, I have established that a complex interaction exists between established melatonin signaling pathways and this newly discovered ATP accumulation rhythm, with the mechanisms underlying this relationship linked to endogenous cycling of SCN cellular physiology.
82

Roles for extra-hypothalamic oscillators in the avian clock

Karaganis, Stephen Paul 15 May 2009 (has links)
Avian circadian clocks are composed of a distributed network of neural and peripheral oscillators. Three neural pacemakers, located in the pineal, the eyes, and the hypothalamus, control circadian rhythms of many biological processes through complex interactions with slave oscillators located throughout the body. This system, an astonishing reflection of the life history of this diverse class of vertebrates, allows birds to coordinate biochemical and physiological processes and harmonize them with a dynamic environment. Much work has been done to understand what roles these pacemakers have in avian biology, how they function, and how they interact to generate overt circadian rhythms. The experimental work presented in this dissertation uses the domestic chicken, Gallus domesticus, as a model to address these questions and carry forward current understanding about circadian biology in this species. To do so, we utilized a custom DNA microarray to investigate rhythmic transcription in cultured chick pineal cells. We then sought to identify genes which might be a component of the pineal clock by screening for rhythmic transcripts that are sensitive to a phase-shifting light stimulus. Finally, we surgically removed the eyes or pineal from chickens to examine the roles of these extra-SCN pacemakers in regulating central and peripheral rhythms in metabolism and clock gene expression. Using these methods, we show that the oscillating transcriptome is diminished in the chick pineal ex vivo, while the functional clustering of clock controlled genes is similar. This distribution reveals multiple conserved circadian regulated pathways, and supports an endogenous role for the pineal as an immune organ. Moreover, the robustness of rhythmic melatonin biosysnthesis is maintained in vitro, demonstrating that a functional circadian clock is preserved in the reduced subset of the rhythmic pineal transcriptome. In addition, our genomic screen has yielded a list of 28 genes that are candidates for functional screening. These should be evaluated to determine any potential role they may have as a component of the pineal circadian clock. Finally, we report that the eyes and pineal similarly function to reinforce rhythms in brain and peripheral tissue, but that metabolism and clock gene expression are differentially regulated in chick.
83

Studies on melatonin receptors in guinea pig platelets and melatonin actions on human leukemic megakaryoblast MEG-01 cells

Yau, Yin-chun, Mabel. January 2001 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2001. / Includes bibliographical references (leaves 72-104).
84

The binding property and function of melatonin receptor in peripheral tissues-chick embryonic vessels and young rat leydig cells

Wang, Xiaofei, January 2001 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2001. / Includes bibliographical references (leaves 93-120).
85

Indole rhythms, locomotor activity and the environment /

Allen, Andrée Elizabeth. January 1988 (has links)
Thesis (Ph. D.)--University of Hong Kong, 1989.
86

Melatonin and prostate cancer cell proliferation : interplay with castration, epidermal growth factor and androgen sensitivity /

Siu, Wing-fai. January 2001 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2002. / Includes bibliographical references (leaves 73-126).
87

The effectiveness and safety of exogenous melatonin in improving the sleep quality among health care professionals: a systematic review

Yeung, Chi-ho, Jackson., 楊志豪. January 2011 (has links)
published_or_final_version / Public Health / Master / Master of Public Health
88

Neuroprotection of melatonin and/or electro-acupuncture in a rat model of focal cerebral ischemia

Liu, Lingguang, 刘灵光 January 2012 (has links)
Stroke is a serious cerebral vascular event and a leading cause of death and disability worldwide, and ischemic stroke is the most common type. Evidence from animal research in acute cerebral ischemia shows that a combination of neuroprotectants might be more efficacious than the single agent given individually. Both melatonin and electro-acupuncture (EA) have been suggested to be effective treatments against cerebral ischemia. However, it is unknown whether a combination of these two therapies could be beneficial against focal cerebral ischemia. In the first study, the effect of post-treatment with a combination of melatonin and EA on regional cerebral blood flow (rCBF), neurological deficit score and infarct volume was investigated in both permanent and transient middle cerebral artery occlusion (MCAO) models in rats. When compared with the single treatment of melatonin or EA, the combination therapy resulted in a significant improvement of neurological function and a dramatic reduction of infarct volume at 72 hr after transient MCAO. A significant upregulatory effect on rCBF has been exerted by the combined treatment. The effect of a combination of melatonin and EA on inflammatory reaction was investigated in the second study. Post-treatment of the combination therapy effectively inhibited neutrophil infiltration as well as the expression of some pro-inflammatory mediators, and increased the anti-inflammatory protein expression at 72 hr after transient MCAO. This beneficial effect may be due to the respective anti-inflammatory effects of melatonin and EA. In the third study, the effect of a combination of melatonin and EA on apoptosis was examined. When compared with the EA treatment alone, post-treatment of the combination therapy exerted a greater inhibitory effect on tissue apoptosis and expression of the pro-apoptotic proteins as well as an upregulatory effect on the anti-apoptotic protein expression. In the fourth study, the effect of continuous post-treatment of a combination of melatonin and EA on transient MCAO was investigated. The combination treatment significantly improved neurological function and decreased infarct volume at 7 days after transient MCAO. Cell proliferation and expression of the neurotrophic factor were increased by the combined treatment. The effect of pretreatment with a combination of melatonin and EA was examined in the fifth study. Neurological function was improved and infarct volume was reduced by the combination pretreatment at 24 hr after transient MCAO. The inflammatory and apoptotic reaction were inhibited by the combined pretreatment through the modulatory effect of the related proteins. In summary, our results show that, when compared with the single treatment of either melatonin or EA, post-treatment with a combination of melatonin and EA induced a complementary neuroprotective effect on improvement of neurological function and a dramatic reduction of infarct volume after transient MCAO. The complementary protection may be partially mediated via anti-inflammation and anti-apoptosis after transient cerebral ischemia. Pretreatment with a combination of melatonin and EA may be more effective in preventing ischemic brain injury after transient focal cerebral ischemia. / published_or_final_version / Medicine / Doctoral / Doctor of Philosophy
89

Melatonin and prostate cancer cell proliferation: interplay with castration, epidermal growth factor and androgen sensitivity

Siu, Wing-fai., 邵穎暉 January 2001 (has links)
abstract / toc / Physiology / Master / Master of Philosophy
90

The effect of melatonin on human luteal cells

Woo, Man-man, Michelle., 胡文文. January 2000 (has links)
published_or_final_version / Physiology / Master / Master of Philosophy

Page generated in 0.0365 seconds