• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Heat of Fusion, Isothermal Crystallization Kinetics and Morphology of Poly(ethylene-co-trimethylene terephthalate) Copolyesters

Chang, Chih-wei 13 July 2004 (has links)
The crystallization kinetics and the melting behavior of a random copolyester with equal amounts of ethylene- and trimethylene- terephthalate units were studied by using a modulated differential scanning calorimeter in both conventional mode (DSC) and modulated mode (TMDSC). Polarizing light microscope (PLM) was used to study the spherulite growth rates and spherulite patterns. Isothermal crystallization was performed at temperatures (TC) between 115 and 142¢J. The Avrami exponents, n1, were found to increase from 3.00 to 3.22 with an increasing TC. At the highest TC, it should be a sporadic nucleation with spherical growth, i.e. n1 = 4. The value of n1 less than 4 and the slow rate of crystallization indicate that both primary and secondary crystallization occurs in parallel rather than in series. Triple- and double- melting peaks were observed for the melting behavior of DSC at 10¢J/min and of TMDSC at 2¢J/min. The results of WAXD, DSC and TMDSC indicate the coexistence of two melting mechanisms, i.e., dual morphologies and the recrystallization process. The Hoffman-Weeks plot gave an equilibrium melting temperature of 176.6¢J from the reversing curves of TMDSC. In this study, the regime II¡÷III transition temperature can be estimated from the inverse of the half-time of crystallization as overall growth rate and the growth rate. Meanwhile, a clear change in morphology from negative regular to banded spherulites was also observed around 132¢J by using PLM. The heat of fusion of polymer is customarily evaluated through the melting point depression measurements with the thermodynamic melting points. Application of the Flory equation to the PET/PTT random copolyesters diluted with di-n-butyl phthalate gave the values of the heat of fusion to be 4.48, 3.43 and 3.07 kcal/mole, respectively, for the random copolyesters containing 28, 38 and 50 mole % of ethylene terephthalate unit. The corresponded values of the interaction energy of mixing at infinite dilution were 3.90, 2.85 and 2.75 cal/cc.
2

Characterization, Crystallization, Melting and Morphology of Poly(ethylene succinate), Poly(trimethylene succinate) and their Copolyesters

Chang, Wei-che 03 July 2006 (has links)
Poly(ethylene succinate) (PES), poly(trimethylene succinate) (PTS) and their copolyesters (PETSAs) with various compositions were used to investigate the structure-property relationship. The results of intrinsic viscosity and GPC have proven successful in preparing high molecular weight polyesters. The chemical compositions and the sequence distribution of co-monomers in the copolyesters were determined by NMR spectroscope. The distributions of ES unit and TS unit were found to be random. Their thermal properties were characterized using differential scanning calorimeter (DSC). The thermal stability of polyesters was analyzed by thermogravimeter (TGA) and polarized light microscope (PLM) under nitrogen. The results of TGA show that all of the samples have similar thermal stability (Tstart : 246¡Ó3 ¢XC), but the thermal degradation temperature of PES and PETSA(95/05) are 213 and 200 ¢XC, respectively, estimated from the isothermal growth rates after pre-melting at various temperatures. The degradation temperature analyzed by PLM is more sensitive than that obtained from TGA. The incorporation of 5 mol% of TS units into PES significantly reduces the thermal stability of PES. In addition, wide-angle X-ray diffractograms (WAXD) were obtained for polyesters which were crystallized isothermally at a temperature 5~10 ¢XC below their melting temperatures. The results of WAXD and DSC indicate that the incorporation of TS units into PES significantly inhibit the crystallization behavior of PES. In the second part of this study, PES and PETSA(95/05) were studied in detail. The crystallization kinetics and the melting behavior were investigated by using DSC in both conventional mode and modulated mode (TMDSC). The reversing, total, and non-reversing heat flow curves were analyzed. The Hoffman-Weeks plots gave an equilibrium melting temperature of 112.7 and 108.3 ¢XC for PES and PETSA(95/05), XI respectively. Only one crystal form was found from WAXD for specimens crystallized isothermally at various temperatures. Based on the WAXD patterns, DSC and TMDSC thermograms, multiple endothermic melting peaks can be explained by two mechanisms, melting-recrystallization-remelting and dual morphologies. PLM was used to study the growth rates and morphology of the spherulites. The growth rates measured in isothermal conditions were very well comparable with those measured by the non- isothermal procedure. In addition, the temperature range of growth rates detected by the non- isothermal procedure is wider than that by the isothermal method, which is time consuming. The regime II®III transition of PES was estimated at ~ 71 ¢XC which is very close to the literature values, and that of PETSA(95/05) was found at ~ 65 ¢XC.
3

Crystallization Behavior of Bisphenol-A Polycarbonate: Effects of Crystallization Time, Temperature, and Molar Mass

Sohn, Seungman 20 April 2000 (has links)
Crystallization and multiple melting behavior of bisphenol-A polycarbonate (PC) was investigated using differential scanning calorimetry (DSC) for the monitoring of thermal behavior and atomic force microscopy (AFM) for the morphology study. The exceedingly slow crystallization kinetics of PC and the feasibility of obtaining near monodisperse fractions provide distinct advantages for the elucidation of the effects of crystallization time, temperature, and molar mass on crystallization kinetics. The effects of molar mass on the glass transition temperature (Tg) and heat capacity change at Tg, and the amorphous density of PC were investigated. Similar to many semicrystalline polymers, PC exhibits a multiple melting behavior upon heating. While for each PC sample, the coexistence of low and high temperature endothermic regions in the DSC heating traces is explained by the melting of populations of crystals with different stabilities, melting-recrystallization-remelting effects are observed only for the lowest molar mass samples. The effects of crystallization temperature and molar mass distribution on overall crystallization kinetics were studied for some of the fractions, including the commercial PC-28K (Mw = 28,000 g.mol-1) sample. Regarding the kinetics of secondary crystallization, particular attention was placed on understanding the effects of molar mass, initial degree of crystallinity prior to the secondary crystallization, and secondary crystallization time and temperature. The secondary crystallization of PC follows the same laws discovered in previous studies of PEEK, PET, it-PS and ethylene copolymers, and the results are discussed in the context of a bundle-like secondary crystallization model. During isothermal annealing of semicrystalline PC-28K around the high melting endotherm, a significant increase of melting temperature along with peak broadening with time was observed. Independently, morphological studies using AFM showed that mean lamellar thickness increases with time during isothermal annealing. These results are discussed in light of isothermal thickening of lamellar crystals. Lastly, almost 200 DSC melting traces of varying molar mass PC samples thermally treated under various conditions were analyzed to calculate crystallinity (Xc), rigid fraction (RF), and rigid amorphous fraction (RAF). The correlation between RAF vs Xc, Tg, and Tg broadening are discussed. / Ph. D.

Page generated in 0.0834 seconds