• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CHARACTERIZATION OF PROTEINS INVOLVED IN RND-DRIVEN HEAVY METAL RESISTANCE SYSTEMS OF CUPRIAVIDUS METALLIDURANS CH34 / Caractérisation de protéines impliquées dans les systèmes RND de résistance aux métaux lourds chez Cupriavidus metallidurans CH34

De Angelis, Fabien 23 March 2010 (has links)
Les systèmes d’efflux tripartite de type Resistance, Nodulation and cell-Division (RND) sont essentiels dans le maintien de phénotypes de résistance multidrogues et contre les métaux lourds dans nombreuses bactéries Gram-négatives. Le transport de ces composés toxiques hors de la cellule est permis par l’assemblage d’une protéine de type antiporteur cation/proton (unité RND) insérée dans la membrane interne, connectée à une protéine insérée dans la membrane externe, pour former un canal de sorti qui traverse l’entièreté de l’enveloppe cellulaire. Le troisième composant du système, la protéine de type membrane fusion protein (MFP) qui est aussi appelée periplasmic adaptor protein (PAP), est requis pour permettre l’assemblage de tout ce complexe à trois composants. Cependant, les MFPs sont supposées jouer un rôle important et actif dans le mécanisme d’efflux du substrat. Pour mieux comprendre le rôle des MFPs au sein des systèmes d’efflux de type RND, nous avons étudié les protéines ZneB (précédemment appelée HmxB) et SilB, les composants périplasmiques des systèmes ZneCBA et SilABC responsables de la résistance aux métaux lourds chez Cupriavidus metallidurans CH34. Nous avons identifié la spécificité de liaison au substrat de ces protéines, montrant leur capacité à fixer le zinc (ZneB), ou le cuivre et l’argent (SilB). De plus, nous avons résolu la structure cristalline de ZneB à une résolution de 2.8 Å dans la forme apo- et avec un ion zinc fixé. La structure de ZneB possède une architecture générale composée de quatre domaines caractéristiques des MFPs, et la présence du site de coordination au zinc dans une région très flexible à l’interface des domaines β-barrel et membrane proximal. Les modifications structurales que la protéine subit lors de la fixation du zinc on été observée dans le cristal mais aussi en solution, ce qui suggère un rôle actif des MFPs dans le mécanisme d’efflux des métaux, vraisemblablement via la fixation et le relargage de l’ion à l’antiporteur. Les études de sélectivité de transport des antiporteurs ZneA et SilA montre que ces dernières et leurs protéines périplasmiques respectives ont des affinités similaires pour les métaux lourds. De plus, les études de transport ont apportés des arguments en faveur de l’hypothèse de capture cytoplasmique du substrat par l’antiporteur, tandis que la capacité des protéines périplasmiques à fixer les métaux lourds a apporté des arguments en faveur de l’hypothèse de capture périplasmique du substrat par l’antiporteur. Les deux modes de capture pourraient en réalité coexister ; cependant, le débat autour du compartiment cellulaire de capture du substrat par l’antiporteur est complexe et requiert de plus amples efforts afin d’être cerné. / Tripartite resistance nodulation cell division (RND)-based efflux complexes are paramount for multidrug and heavy metal resistance in numerous Gram-negative bacteria. The transport of these toxic compounds out of the cell is driven by the inner membrane proton/substrate antiporter (RND protein) connected to an outer membrane protein to form an exit duct that spans the entire cell envelope. The third component, a membrane fusion protein (MFP) also called periplasmic adaptor protein, is required for the assembly of this complex. However, MFPs are also proposed to play an important active role in substrate efflux. To better understand the role of MFPs in RND-driven efflux systems, we studied ZneB (formerly HmxB) and SilB, the MFP components of the ZneCAB and SilABC heavy metal RND-driven efflux complexes from Cupriavidus metallidurans CH34. We have identified the substrate binding specificity of the proteins, showing their ability to selectively bind zinc (ZneB), or copper and silver cations (SilB). Moreover, we have solved the crystal structure of the apo- and the metal-bound forms of ZneB to 2.8 Å resolution. The structure of ZneB displays a general architecture composed of four domains characteristic of MFPs, and it reveals the metal coordination site at the very flexible interface between the β-barrel and the membrane proximal domains. Structural modifications of the protein upon zinc binding were observed in both the crystal structure and in solution, suggesting an active role of MFPs in substrate efflux possibly through binding and release. The selectivity assays of the antiporter proteins ZneA and SilA demonstrated similar specificities in relation to their cognate MFPs toward heavy metal cations. Moreover, antiporter transport assays provide evidence for cytoplasmic substrate capture by this protein, whereas MFP substrate binding provides evidence for periplasmic substrate capture. Therefore, both modes of capture might co-exist; nevertheless, the substrate capture issue is a complex topic still needing consequent efforts to understand it.
2

Role of membrane fusion protein Ykt6 in regulating epithelial cell-cell and cell-matrix adhesions.

Joshi, Supriya 01 May 2014 (has links)
Intercellular junctions and cell-matrix adhesions play important roles in the maintenance of epithelial integrity. Assembly and remodeling of the plasma membrane complexes are regulated by membrane trafficking and fusion. This thesis is aimed to elucidate the roles of an important membrane fusion protein, Ykt6, in the regulation of epithelial cell adhesion and migration. For the first time, we show that Ykt6 is essential for assembly of adherens junctions and tight junctions in human prostate epithelial cells. We also observed that Ykt6 negatively regulates both collective epithelial cell migration and cell invasion into Matrigel. The effects of YKT6 on epithelial junctions involves expressional regulation of key junctional proteins, E-cadherin and claudin-4, whereas its effects on cell motility can be explained by antagonizing functions of junctional adhesion molecule-A. Overall, this study identifies YKT6 as a novel regulator of epithelial cell adhesions and motility.
3

Structure and Dynamics of AcrA, a Periplasmic Component of a Multidrug Efflux Pump

Ip, Hermia 18 February 2010 (has links)
AcrA is the periplasmic component of an efflux system AcrA-AcrB-TolC, which can expel different classes of antibiotics. AcrB is the inner membrane (IM) pump that utilizes proton-motive force for the active transport, TolC is the outer membrane (OM) channel, and AcrA coordinates the actions of AcrB and TolC, so that substrates are expelled across the two membranes, bypassing the periplasm. It has been proposed that AcrA either provides a static seamless link between AcrB and TolC, or acts like its analogous viral membrane fusion protein (MFP) and actively brings the IM and OM closer for substrate transfer. To better understand the role of AcrA in the efflux mechanism, site-directed spin labeling (SDSL)/EPR (electron paramagnetic resonance) spectroscopy is used to investigate the structure and dynamics of AcrA in solution. My results demonstrated that AcrA is a dynamic protein that undergoes pH-dependent and reversible conformational changes. AcrA contains an interrupted alpha-helical, coiled-coil domain flanked by a pair of beta-stranded lipoyl motifs, and my SDSL/EPR analysis revealed that the pH-induced conformation change mainly involves the coiled-coil and the lipoyl domains. In addition, I found that each AcrA monomer folds into an intra-molecular hairpin and AcrA monomers oligomerize with their coiled-coil hairpins aligned in parallel. Unlike the pH-induced conformational rearrangement of a viral MFP, change in pH alters both intra- and inter-molecular interaction along the coiled-coil of AcrA without rearranging the hairpin fold. The organization of AcrA protomers and its pH-induced conformational switching are, however, congruent with the TolC coiled-coil hairpins in the iris-like opening of the TolC channel. Together, my studies suggest that rather than being a passive structural linkage between AcrB and TolC, AcrA plays an active role mediating the drug efflux. The reported AcrA dynamics provides new insights into the AcrA-TolC interactions for the channel opening during the efflux process.
4

Structure and Dynamics of AcrA, a Periplasmic Component of a Multidrug Efflux Pump

Ip, Hermia 18 February 2010 (has links)
AcrA is the periplasmic component of an efflux system AcrA-AcrB-TolC, which can expel different classes of antibiotics. AcrB is the inner membrane (IM) pump that utilizes proton-motive force for the active transport, TolC is the outer membrane (OM) channel, and AcrA coordinates the actions of AcrB and TolC, so that substrates are expelled across the two membranes, bypassing the periplasm. It has been proposed that AcrA either provides a static seamless link between AcrB and TolC, or acts like its analogous viral membrane fusion protein (MFP) and actively brings the IM and OM closer for substrate transfer. To better understand the role of AcrA in the efflux mechanism, site-directed spin labeling (SDSL)/EPR (electron paramagnetic resonance) spectroscopy is used to investigate the structure and dynamics of AcrA in solution. My results demonstrated that AcrA is a dynamic protein that undergoes pH-dependent and reversible conformational changes. AcrA contains an interrupted alpha-helical, coiled-coil domain flanked by a pair of beta-stranded lipoyl motifs, and my SDSL/EPR analysis revealed that the pH-induced conformation change mainly involves the coiled-coil and the lipoyl domains. In addition, I found that each AcrA monomer folds into an intra-molecular hairpin and AcrA monomers oligomerize with their coiled-coil hairpins aligned in parallel. Unlike the pH-induced conformational rearrangement of a viral MFP, change in pH alters both intra- and inter-molecular interaction along the coiled-coil of AcrA without rearranging the hairpin fold. The organization of AcrA protomers and its pH-induced conformational switching are, however, congruent with the TolC coiled-coil hairpins in the iris-like opening of the TolC channel. Together, my studies suggest that rather than being a passive structural linkage between AcrB and TolC, AcrA plays an active role mediating the drug efflux. The reported AcrA dynamics provides new insights into the AcrA-TolC interactions for the channel opening during the efflux process.
5

Characterization of proteins involved in RND-driven heavy metal resistance systems of Cupriavidus metallidurans CH34 / Caractérisation de protéines impliquées dans les systèmes RND de résistance aux métaux lourds chez Cupriavidus metallidurans CH34

De Angelis, Fabien 23 March 2010 (has links)
Les systèmes d’efflux tripartite de type Resistance, Nodulation and cell-Division (RND) sont essentiels dans le maintien de phénotypes de résistance multidrogues et contre les métaux lourds dans nombreuses bactéries Gram-négatives. Le transport de ces composés toxiques hors de la cellule est permis par l’assemblage d’une protéine de type antiporteur cation/proton (unité RND) insérée dans la membrane interne, connectée à une protéine insérée dans la membrane externe, pour former un canal de sorti qui traverse l’entièreté de l’enveloppe cellulaire. Le troisième composant du système, la protéine de type membrane fusion protein (MFP) qui est aussi appelée periplasmic adaptor protein (PAP), est requis pour permettre l’assemblage de tout ce complexe à trois composants. Cependant, les MFPs sont supposées jouer un rôle important et actif dans le mécanisme d’efflux du substrat. Pour mieux comprendre le rôle des MFPs au sein des systèmes d’efflux de type RND, nous avons étudié les protéines ZneB (précédemment appelée HmxB) et SilB, les composants périplasmiques des systèmes ZneCBA et SilABC responsables de la résistance aux métaux lourds chez Cupriavidus metallidurans CH34. Nous avons identifié la spécificité de liaison au substrat de ces protéines, montrant leur capacité à fixer le zinc (ZneB), ou le cuivre et l’argent (SilB). De plus, nous avons résolu la structure cristalline de ZneB à une résolution de 2.8 Å dans la forme apo- et avec un ion zinc fixé. La structure de ZneB possède une architecture générale composée de quatre domaines caractéristiques des MFPs, et la présence du site de coordination au zinc dans une région très flexible à l’interface des domaines β-barrel et membrane proximal. Les modifications structurales que la protéine subit lors de la fixation du zinc on été observée dans le cristal mais aussi en solution, ce qui suggère un rôle actif des MFPs dans le mécanisme d’efflux des métaux, vraisemblablement via la fixation et le relargage de l’ion à l’antiporteur. Les études de sélectivité de transport des antiporteurs ZneA et SilA montre que ces dernières et leurs protéines périplasmiques respectives ont des affinités similaires pour les métaux lourds. De plus, les études de transport ont apportés des arguments en faveur de l’hypothèse de capture cytoplasmique du substrat par l’antiporteur, tandis que la capacité des protéines périplasmiques à fixer les métaux lourds a apporté des arguments en faveur de l’hypothèse de capture périplasmique du substrat par l’antiporteur. Les deux modes de capture pourraient en réalité coexister ;cependant, le débat autour du compartiment cellulaire de capture du substrat par l’antiporteur est complexe et requiert de plus amples efforts afin d’être cerné. / Tripartite resistance nodulation cell division (RND)-based efflux complexes are paramount for multidrug and heavy metal resistance in numerous Gram-negative bacteria. The transport of these toxic compounds out of the cell is driven by the inner membrane proton/substrate antiporter (RND protein) connected to an outer membrane protein to form an exit duct that spans the entire cell envelope. The third component, a membrane fusion protein (MFP) also called periplasmic adaptor protein, is required for the assembly of this complex. However, MFPs are also proposed to play an important active role in substrate efflux. To better understand the role of MFPs in RND-driven efflux systems, we studied ZneB (formerly HmxB) and SilB, the MFP components of the ZneCAB and SilABC heavy metal RND-driven efflux complexes from Cupriavidus metallidurans CH34. We have identified the substrate binding specificity of the proteins, showing their ability to selectively bind zinc (ZneB), or copper and silver cations (SilB). Moreover, we have solved the crystal structure of the apo- and the metal-bound forms of ZneB to 2.8 Å resolution. The structure of ZneB displays a general architecture composed of four domains characteristic of MFPs, and it reveals the metal coordination site at the very flexible interface between the β-barrel and the membrane proximal domains. Structural modifications of the protein upon zinc binding were observed in both the crystal structure and in solution, suggesting an active role of MFPs in substrate efflux possibly through binding and release. The selectivity assays of the antiporter proteins ZneA and SilA demonstrated similar specificities in relation to their cognate MFPs toward heavy metal cations. Moreover, antiporter transport assays provide evidence for cytoplasmic substrate capture by this protein, whereas MFP substrate binding provides evidence for periplasmic substrate capture. Therefore, both modes of capture might co-exist; nevertheless, the substrate capture issue is a complex topic still needing consequent efforts to understand it. / Doctorat en Sciences agronomiques et ingénierie biologique / info:eu-repo/semantics/nonPublished

Page generated in 0.0671 seconds