• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and characterisation of sulphonated polyethersulphone membrane materials

Boukili, Aishah January 2020 (has links)
>Magister Scientiae - MSc / With current climate change, growing population, and rapid industrialization of developing countries, water is increasingly becoming a scare resource. Within a power plant, processes that consume most water are demineralized water production (boiler make-up), heat rejection (cooling) and emission control (wet flue gas desulfurization). Eskom’s fleet of existing coal-fired power plants are not equipped with SO2 abatement technologies and therefore retrofitting of the plants will be required to meet the compliance levels for SO2 emissions.
2

Development and understanding of new membranes based on aromatic polymers and heterocycles for fuel cells

Li, Wen 20 October 2009 (has links)
Direct methanol fuel cells (DMFC) are appealing as a power source for portable devices as they do not require recharging with an electrical outlet. However, the DMFC technology is confronted with the high crossover of methanol fuel from the anode to the cathode through the currently used Nafion membrane, which not only wastes the fuel but also poisons the cathode platinum catalyst. With an aim to overcome the problems encountered with the Nafion membrane, this dissertation focuses on the design and development of new polymeric membrane materials for DMFC and a fundamental understanding of their structure-property-performance relationships. Several polymeric blend membranes based on acid-base interactions between an aromatic acidic polymer such as sulfonated ploy(ether ether ketone) (SPEEK) and an aromatic basic polymer such as heterocycle tethered poly(sulfone) (PSf) have been explored. Various heterochylces like nitro-benzimidazole (NBIm), 1H-Perimidine (PImd), and 5-amino-benzotriazole (BTraz) have been tethered to PSf to understand the influence of pKa values and the size of the hetrocycles. The blend membranes show lower methanol crossover and better performance in DMFC than plain SPEEK due to an enhancement in proton conductivity through acid-base interactions and an insertion of the heterocycle side groups into the ionic clusters of SPEEK as indicated by small angle Xray scattering and TEM data. The SPEEK/PSf-PImd blend membrane shows the lowest methanol crossover due to the larger size of the side groups, while the SPEEK/PSf-BTraz blend membrane shows the highest proton conductivity and maximum power density. To further investigate the methanol-blocking effect of the heterocycles, N,N’-Bis- (1H-benzimidazol-2-yl)-isophthalamide (BBImIP) having two amino-benzimidazole groups bonded to a phenyl ring has been incorporated into sulfonated polysulfone (SPSf) and SPEEK membranes. With two 2-amino-benzimidazole groups, which could greatly increase the proton transfer sites, and three phenyl rings, which are compatible with the aromatic polymers, the BBImIP/SPSf and BBImIP/SPEEK blend membranes show suppressed methanol crossover and increased fuel cell performance in DMFC. Novel sulfonated copolymers based on poly(aryl ether sulfone) (SPS-DP) that exhibit low methanol crossover have been synthesized and explored as a methanol-barrier center layer in a multilayer membrane configuration having SPEEK as the outer layers. These multilayer membranes exhibit better performance in DMFC than plain SPEEK and Nafion 115 membranes due to suppressed methanol crossover. To address the issue of incompatibility between the new hydrocarbon-based membranes synthesized and the Nafion ionomer used in the catalyst layer in fabricating membrane-electrode assemblies (MEAs), the MEAs have been fabricated with the SPEEK membranes and 10 to 30 % SPEEK ionomer in the catalyst layer. These MEAs exhibit better performance in DMFC compared to the MEAs fabricated with the SPEEK membranes and Nafion ionomer in the catalyst layer due to lower interfacial resistance. / text

Page generated in 0.1006 seconds