Spelling suggestions: "subject:"demory alloy"" "subject:"demory lloy""
31 |
Design of a Robust Priming Controller for SMA ActuatorsSong, Zihao Hunter 21 September 2012 (has links)
Shape Memory Alloys (SMAs) have been demonstrated to be effective actuator elements in a wide range of applications, such as robotics, medicine, aerospace and automotive. Enabled by the unique thermo-mechanical properties of SMAs, these actuators offer the advantages of light weight, high power-to-weight ratio and a simple actuation mechanism compared to traditional actuator types. At the same time, the widespread adoption of the SMA actuator remains elusive as its low power efficiency and complex hysteretic behaviour often render it an impractical means of actuation. These actuators also exhibit a slow response speed and their response is highly sensitive to changes in the external environment, namely ambient temperature and mechanical stress, thus complicating their control. Position, force or temperature sensors may be used to facilitate feedback control, but at the cost of increasing the overall size and complexity of the system.
The difficulties caused by the hysteretic behaviour can be largely avoided when SMA wires are used as on-off actuators, making SMAs well suited for such applications. However, they may still be subject to a wide range of dynamic operating conditions that would impact their actuation time, and achieving a consistent actuation time is often highly desirable.
This thesis presents the synthesis of a nitinol SMA actuator control system which uses electrical resistance feedback to enable a fast response speed and robustness to disturbances in the external environment. A study of the resistance behaviour of SMAs is discussed first. The design of an adaptive controller and the experimental evaluation of its performance are described in detail next. The objective of the SMA actuator control system is to achieve a consistent and fast actuation time throughout the range of operating ambient temperature and stress. The control system is implemented experimentally and shown to be quite successful.
|
32 |
Adaptive inverse modeling of a shape memory alloy wire actuator and tracking control with the modelKoh, Bong Su 02 June 2009 (has links)
It is well known that the Preisach model is useful to approximate the effect of
hysteresis behavior in smart materials, such as piezoactuators and Shape Memory
Alloy(SMA) wire actuators. For tracking control, many researchers estimate a Preisach
model and then compute its inverse model for hysteresis compensation. However, the
inverse of its hysteresis behavior also shows hysteresis behavior. From this idea, the
inverse model with Kransnoselskii-Pokrovskii(KP) model, a developed version of
Preisach model, can be used directly for SMA position control and avoid the inverse
operation. Also, we propose another method for the tracking control by approximating
the inverse model using an orthogonal polynomial network. To estimate and update the
weight parameters in both inverse models, a gradient-based learning algorithm is used.
Finally, for the SMA position control, PID controller, adaptive controllers with KP
model and adaptive nonlinear inverse model controller are compared experimentally.
|
33 |
Seismic Protection of Bridge Structures Using Shape Memory Alloy-Based Isolation Systems against Near-Field EarthquakesOzbulut, Osman Eser 2010 December 1900 (has links)
The damaging effects of strong ground motions on highway bridges have revealed the limitations of conventional design methods and emphasized the need for innovative design concepts. Although seismic isolation systems have been proven to be an effective method of improving the response of bridges during earthquakes, the performance of base-isolated structures during near-field earthquakes has been questioned in recent years. Near-field earthquakes are characterized by long period and large- velocity pulses. They amplify seismic response of the isolation system since the period of these pulses usually coincides with the period of the isolated structures.
This study explores the feasibility and effectiveness of shape memory alloy (SMA)-based isolation systems in order to mitigate the response of bridge structures against near-field ground motions. SMAs have several unique properties that can be exploited in seismic control applications. In this work, uniaxial tensile tests are conducted first to evaluate the degree to which the behavior of SMAs is affected by variations in loading rate and temperature. Then, a neuro-fuzzy model is developed to simulate the superelastic behavior of SMAs. The model is capable of capturing rate- and temperature-dependent material response while it remains simple enough to carry out numerical simulations. Next, parametric studies are conducted to investigate the effectiveness of two SMA-based isolation systems, namely superelastic-friction base isolator (S-FBI) system and SMA/rubber-based (SRB) isolation system. The S-FBI system combines superelastic SMAs with a flat steel-Teflon bearing, whereas the SRB isolation system combines SMAs with a laminated rubber bearing rather than a sliding bearing. Upon evaluating the optimum design parameters for both SMA-based isolation systems, nonlinear time history analyzes with energy balance assessment are conducted to compare their performances. The results show that the S-FBI system has more favorable properties than the SRB isolation system. Next, the performance of the S-FBI systems is compared with that of traditional isolation systems used in practice. In addition, the effect of outside temperature on the seismic response of the S-FBI system is assessed. It is revealed that the S-FBI system can successfully reduce the response of bridges against near-field earthquakes and has excellent re-centering ability.
|
34 |
Tissue Engineering Approaches for the Treatment of Knee Joint DamageMcMahon, Rebecca Erin 2011 May 1900 (has links)
There are more than 150,000 anterior cruciate ligament reconstructions each year with the goal of recovering the balance between knee stability and mobility. As many as 25 percent of these procedures will end in joint instability that can cause further damage. The risk of developing degenerative joint disease (DJD) increases in patients with previous knee injury, resulting in a higher instance of total knee arthroplasty (TKA).
There are more than 400,000 TKA procedures each year, but the waiting lists for this surgery shows that many more patients are hoping to undergo this procedure. TKA provides improved knee function and pain relief for patients suffering from DJD. Although this procedure is considered successful, as younger patients undergo this treatment, the long-term performance must be improved. Major mechanisms of failure include component loosening from stress-shielding, poor integration of the implant with native tissue, and ion release from the implant. TiNb alloys are more biocompatible than currently used alloys, such as NiTi, and have mechanical properties closer to bone, so they would reduce the instance of stress shielding. TiNb can be made porous for better integration with the native bone and has superior corrosion resistance than NiTi.
Engineered ligaments have generally failed to achieve mechanical properties sufficiently similar to their native counterparts, but also lack the osteochondral interface critical to the transfer of load between ligament and bone. The osteochondral interface could be incorporated through a gradient of inorganic content toward the bony insertion ends of the ligament graft, as we showed that in increase of inorganic content resulted in the transdifferentiation of osteoblasts toward chondrocyte-like cells (bone to cartilage-like).
A composite scaffold composed of an electrospun mesh with either a hydrogel component or extracellular matrix (ECM) produced by the cells may be a suitable tissue engineered ligament graft. The non-linear stress-strain behavior seen in native ligament is exhibited by both of these systems, and the ECM produced by these systems is consistent with ligament tissue. The ECM-electrospun mesh composite exhibited higher elastic modulus than the fibrin-electrospun mesh composite, but required extensive pre culture while the fibrin-electrospun mesh composite could be fabricated in situ.
|
35 |
Thermomechanical Characterization Of Ti Rich Tini Shape MemoryalloysYasar, Fatih 01 December 2006 (has links) (PDF)
Titanium-nickel is a unique class of material known as Shape Memory Alloy (SMA). A thermoelastic martensitic phase transformation is responsible for its extraordinary properties such as shape memory effect and superelasticity. The near equiatomic Ti-Ni alloys are the commercially most exploited SMAs because of the unique combination of these properties and superior ductility, strength, fatigue resistance and corrosion resistance. The properties of Ti-Ni SMAs are very sensitive to composition and the processing parameters. The properties of Ti-Ni SMAs can be modified to a great extent by choice of composition, mechanical working and heat treatment.
Thermo-mechanical treatments are required to strengthen the matrix and improve the shape memory characteristics. Plastic deformation and subsequent annealing is the common way to improve shape memory properties.
In the present study, Ti- 50 at% Ni wire specimens are produced and used for the investigation of the effect of different heat treatment and cold working processes on shape memory characteristics. To investigate the thermomechanical behavior of differently processed wire specimens, a fully computerized servo hydraulic thermomechanical testing machine was designed and constructed. Testing machine was capable to perform different types of tests that are selected by the user. It can both heat and cool the specimen automatically according to the testing sequence by applying DC current directly through the SMA wire or by sending liquid nitrogen into the cooling chamber. Temperature is measured by a K-type thermocouple directly mounted on the wire specimen with a glass tape. Force that is applied to the specimen is produced by hydraulic power unit with a double action cyclinder and it is controlled by a controller which takes the feedback from the loadcell and LVDT (Linear Variable Distance Transducer). During performig thermomechanical-tests all the data of loadcell, LVDT and thermocouple are collected by a data acqusition system integrated with a host computer that operates the program XPC Target.
Ti-Ni alloy with equiatomic composition is prepared in vacum induction furnace. Specimen cast in the form of rod was then hot swaged. Subsequent to swaging, cold wire drawing, intermediate annealing at 500 & / #61616 / C and water quenching was applied to obtain SMA wire with a diameter of 1.52 mm. Ti-Ni wires produced were subjected to four different processes. All the samples were initially solution heat treated at 925 & / #61616 / C for 30 minutes prior to water quenching. Some of the samples were further treated by an intermediate anneal at 500 & / #61616 / C. To see the effect of cold working / prior to intermediate annealing, 20 % or 40 % cold work was applied to another group of specimens.
To study the shape memory characteristics of specimens subjected to the above mentioned processes, four types of test, namely constant stress free recovery test, constant strain free recovery test, constant stress constrained recovery test and constant strain constrained recovery test, were designed and applied cyclically.
The tests have shown that the stress plateau observed in the first cycle of the tests disappear upon cycling and the shape memory characteristics improve and stabilize with cycling. Once trained by cycling, fractional free recovery was observed to reach to 100 % and recovery stress to reach 120% of the applied stress if shape recovery is prevented.
|
36 |
A Comparative Study on Micro Electro-Discharge Machining of Titanium Alloy (TI-6AL-4V) and Shape Memory Alloy (NI-TI)Kakavand, Pegah 01 May 2015 (has links)
The purpose of this research was to investigate the surface modifications that take place during the machining of NiTi SMA and Ti-6Al-4V with micro-EDM. This was done by creating an array of blind holes and micro-patterns on both work-pieces. To analyze the machined surface and investigate the results, scanning electron microscope (SEM), energy dispersive X- ray spectroscopy (EDS) and X-ray diffraction (XRD) techniques were employed. In addition, the effects of various operating parameters on the machining performance was studied to identify the optimum parameters for micro-EDM of NiTi SMA and Ti-6Al-4V. Recently, aerospace and biomedical industries have placed a high demand on nonconventional machining processes, which can be used to machine high strength and hardto- cut materials such as Titanium alloys, Shape Memory Alloys (SMA) and Super Alloys. Electrical Discharge Machining (EDM) is one of the non-traditional technologies that remove materials from the workpiece through a series of electrical sparks that occur between the workpiece and cutting tool with the presence of dielectric liquid. Obtaining smooth and defect-free surfaces on both workpieces was one of the challenges due to the re-solidified debris on the machined surface. The experimental results showed that there was significant amount of re-casting and formation of resolidification of debris on the Ti surface after machining. On the other hand, the surface generated in NiTi SMA were comparatively smoother with lesser amount of resolidified debris on the surface. By analyzing the results from XRD and EDS, some elements of electrode and dielectric materials such as Tungsten, Carbon and Oxygen were observed on NiTi and Ti surface after machining. In the study of effect of operating parameters, it was found that the voltage, capacitance and tool rotational speed had significant effect on machining time. The machining time was reduced by increasing the voltage, capacitance and tool rotational speed. The machining time was found to be comparatively higher for machining NiTi SMA than Ti alloy. Comparing all the parameters, the voltage of 60 V, capacitance of 1000 PF, and tool rotational speed of 3500 RPM were selected as optimum parameters for this study. Although signs of tool electrode wear and debris particles on the machined surface were observed for both workpieces during the micro-EDM process, Ti alloy and NiTi SMA could be machined successfully using the micro-EDM process.
|
37 |
FINITE ELEMENT MODELING AND FABRICATION OF AN SMA-SMP SHAPE MEMORY COMPOSITE ACTUATORSouri, Mohammad 01 January 2014 (has links)
Shape memory alloys and polymers have been extensively researched recently because of their unique ability to recover large deformations. Shape memory polymers (SMPs) are able to recover large deformations compared to shape memory alloys (SMAs), although SMAs have higher strength and are able to generate more stress during recovery.
This project focuses on procedure for fabrication and Finite Element Modeling (FEM) of a shape memory composite actuator. First, SMP was characterized to reveal its mechanical properties. Specifically, glass transition temperature, the effects of temperature and strain rate on compressive response and recovery properties of shape memory polymer were studied. Then, shape memory properties of a NiTi wire, including transformation temperatures and stress generation, were investigated. SMC actuator was fabricated by using epoxy based SMP and NiTi SMA wire. Experimental tests confirmed the reversible behavior of fabricated shape memory composites.
The Finite Element Method was used to model the shape memory composite by using a pre-written subroutine for SMA and defining the linear elastic and plastic properties of SMP. ABQUS software was used to simulate shape memory behavior. Beside the animated model in ABAQUS, constitutive models for SMA and SMP were also developed in MATLAB® by using the material properties obtained from experiments. The results of FEM simulation of SMC were found to be in good agreement with experimental results.
|
38 |
VIABILITY OF A CONTROLLABLE CHAOTIC MICROMIXER THROUGH THE USE OF TITANIUM-NICKEL SHAPE MEMORY ALLOYLilly, David Ryan 01 January 2011 (has links)
Microfluidic devices have found applications in a number of areas, such as medical analysis, chemical synthesis, biological study, and drug delivery. Because of the small channel dimensions used in these systems, most microchannels exhibit laminar flow due to their low Reynold’s number, making mixing of fluids very challenging. Mixing at this size scale is diffusion-limited, so inducing chaotic flow patterns can increase the interface surface area between two fluids, thereby decreasing overall mixing time.
One method to create a chaotic flow within the channel is through the introduction of internal protrusions into the channel. In such an application protrusions that create a rotational flow within the channel are preferred due to their effectiveness in folding the two fluids over one another. The novel mixer outlined in this paper uses a Ti-Ni shape memory alloy for the creation of protrusions that can be turned controlled through material temperature. Controllability of the alloy allows users to turn the chaotic flow created by the protrusions off and on by varying the temperature of the mixer. This ability contributes to the idea of a continuous microfluidic system that can be turned on only when necessary as well as recycle unmixed fluids while turned off.
|
39 |
Studies On Nickel-Titanium Shape Memory Alloy Thin Films For Micro-actuator ApplicationsSharma, Sudhir Kumar 12 1900 (has links) (PDF)
Shape memory alloys (SMAs) have been recognized as one of the most promising materials for MEMS micro-actuator applications. Among the available materials, Nickel/Titanium (NiTi) SMAs are more popular because, they exhibit unique properties in shape memory effect (SME) and pseudo-elasticity (PE). In addition NiTi SMA possesses high corrosion resistance, excellent mechanical properties and is also bio¬compatible. NiTi thin-film SMAs have been considered as the most significant material in the field of MEMS applications, which can be patterned with standard lithographic techniques to scale-up for batch production. However, the lack of proper understanding of basic materials’ properties and inability to reproduce, has limited the usage of this material in MEMS devices. The properties of NiTi SMA thin-films are very much sensitive to the elemental composition and structure, which are in turn decided by the deposition process and process parameters.
A brief history of NiTi shape memory alloys (SMAs), basic information, transformation characteristics, crystal structure, phase diagram and literature reviewed for the current motivation have been presented in the second chapter
In the third chapter, a brief summary about the deposition techniques relevant to NiTi film deposition has been presented. The deposition of NiTi films by a number of deposition techniques such as thermal evaporation, co-evaporation, molecular beam Epitaxy, pulsed laser deposition, flash evaporation, electron beam deposition, filtered arc deposition, ion beam assisted sputter deposition, vacuum plasma spraying, ion beam sputtering, ECR sputtering and magnetron sputtering techniques have been discussed. In order to achieve a precise control over film thickness and composition of the films on to the substrates, the selection of magnetron sputtering has been highlighted. In the present thesis, two prolonged approaches such as DC magnetron sputtering of an alloy target and co-sputtering of elemental targets have been presented. Various characterization techniques used for film thickness, composition, structure, micro¬structure, electrical, phase transformation and mechanical properties have also been briefly presented in the same chapter.
In the fourth chapter, description of Conventional Alloy Target Sputtering System has been presented. DC magnetron sputtering of an alloy target with two different atomic ratios (Ni:Ti = 45:55 & 50:50) has been used for depositing the coatings. Several limitations in the reproducibility and repeatability have been observed with single alloy target sputtering, irrespective of the target composition ratio. In addition to this, incorporation of oxygen in the films during and after deposition has been observed, which has limited the extensive usage of this single alloy target system.
The limitations regarding control over composition, thickness uniformity over large area have been improved by designing and fabricating a dedicated Three Target Magnetron Co-sputtering System. The vacuum diagnosis of the system under different conditions has been carried out by using PPR-200 Residual Gas Analyzer (RGA), which have included in Appendix I. Similar to alloy target sputtering system, the thickness uniformity and required composition with deposition parameters over a size of 75 mm diameter has been achieved and the process repeatability has been established. Oxygen incorporation in the films during deposition has been minimized by pre-sputtering of Ti target for known duration of time, which has resulted in significant reduction in partial pressure of oxygen in the chamber. The oxide layer formation on film surface has been eliminated by in-situ capping layer (TiN) deposition.
In the fifth chapter, the influence of process parameters such as sample locations, substrate to target distance (STD), working pressure (WP), gas flow rates, deposition rates, deposition and annealing temperature, Target power, on the film thickness and composition uniformity have been presented for alloy target sputtering system as well as for the co-sputtering system. The film thicknesses have been measured with stylus method. Film compositions have been determined by energy dispersive X-ray spectroscopy (EDS), Secondary ion mass spectrometry (SIMS), Rutherford backscattering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS). The working pressure of 1.5 X 10-3 mbar, STD of 90 mm and target power of 100 W have been found to produce coatings having uniform thickness and composition over the given area for alloy target sputtering system. Similar investigations have been carried out for co-sputtered NiTiCu films. The working pressure of 1.5x 10-3 mbar, at a STD of 90 mm, at a rotational speed of 15 rpm and at target powers of 600, 50 and 12 W for Ti, Ni and Cu respectively, have resulted in the thickness and required composition uniformity over a size of 75 mm diameter substrate and the process repeatability has been established.
In the Sixth chapter, the influence of process parameters on film structure and micro-structure on the NiTi/NiTiCu films deposited by a single alloy target and co¬sputtering have been studied by different analytical techniques like XRD, TEM, AFM, SEM etc. Phase transformation temperatures and kind of transformations have been investigated by DSC, Resistivity / Temperature and Stress/ Temperature studies and correlations have been established. The process parameters have been optimized for TiN deposition, which act as the capping layer to protect NiTi films from surface oxidation. The variation in mechanical behavior for the NiTi/ NiTiCu films before and after TiN capping by nano-indentation test have also presented.
XRD and TEM studies have shown that the NiTi / NiTiCu films deposited at room temperature to 400o C are amorphous. Post-annealing, at a temperature of 450O C or above resulted in the film crystallization with oxide layer formation at the film surface, which has been confirmed by XRD and XTEM studies. In the case of Ni-rich NiTi films, R-phase diffraction peaks have also been identified in addition to the Austenite / Martensite phase. XRD investigations have shown that Ti-rich NiTi and Ni-rich NiTi films have resulted in precipitate free films. In the case of Ti-rich NiTiCu and Ni-rich NiTiCu films, the variations in Ti/Ni target power has resulted in the formation of NiTi 2 and Ni3Ti precipitates along with their parent Martensite and Austenite phases. When the Cu content is increased in NiTiCu films, an increase in number of Martensite phase diffraction peaks in XRD spectrum has been observed. XTEM studies have confirmed formation of oxide layer, inter-metallic layer and interface layer at higher post annealing temperatures. SEM studies have shown that the films deposited at higher gas flow rate results in the columnar micro-structure. In the context of NiTiCu films, the films deposited at higher Ti target power have shown more compact and tightly packed film micro-structure. AFM studies have shown increase in the average crystallite size and film roughness with post annealing temperature and duration.
TiN coating has been used as the capping layer onto NiTi / NiTiCu films. Structural and micro-structural comparison of these films before and after TiN coating has resulted the appearance of (111) TiN peak in all TiN capped films. SEM and AFM studies have shown that the film roughness have decreased after capping layer deposition.
DSC thermal cycling used to verify the film crystallization temperature has shown the appearance of exothermic peak in NiTi / NiTiCu films. DSC, Resistivity-temperature, stress-temperature response has been confirmed the transformation temperature and kind of transformations in all the films. Residual stress measurements have shown that the crystalline films exhibited lower bi-axial stress in comparison to the amorphous films. Ti-rich NiTi films have shown single phase transformations (M-A and A-M) whereas two phase transformations (M-R-A and A-R-M) have been observed in Ni-rich NiTi films. Higher deposition / annealing temperature have shown the appearance of distinct phase transformation peaks in resistivity vs. temperature studies. In the case of NiTiCu films, the decrease in film crystallization temperature with increase in the Cu content has been observed. The phase transformation temperature evaluated from second thermal cycle has shown decrease in the width of hysteresis loop with increase in the Cu content in NTC films.
Nano-indentation studies have been carried out to evaluate the micro-hardness and modulus values of TiN capped and uncapped NiTi / NiTiCu films. The modulus and hardness uniformity have been confirmed for the different location over a diameter of 75 mm. The modulus and hardness values have increased with increase in the substrate and annealing temperature. Increase in the Cu target power has resulted in the increase in the hardness and modulus values under same deposition conditions. TiN coated NiTi / NiTiCu films have shown larger modulus and hardness values than the uncapped films.
In the Seventh chapter, the fabrication process and actuation response for silicon dioxide, Aluminum and NiTi SMA coated micro-cantilevers has been discussed. Various nano-structures such as pyramids, beams and pillars by focused ion beam (FIB) micro-machining have been fabricated. High aspect ratio nano-pillars have been selected for micro-compression testing.
In summary, this thesis emphasizes on the fabrication of specific sputtering systems relevant to NiTi film deposition and process parameter optimization for desired film thickness and composition uniformity. DC magnetron sputtering of a NiTi alloy target
(50:50 and 45:55 at. %) and co-sputtering of elemental targets (Ni, Ti and Cu) have been presented. These films have been investigated for structural, micro-structural, phase transformation and mechanical properties. In-situ deposition of TiN capping layer, on to NiTi / NiTiCu films has been carried out to reduce the oxygen trapping. The fabrication process and actuation response of micro-cantilevers have been described. The etching characteristics to generate various nano-structures viz. pyramids, beams and pillars by focused ion beam (FIB) micro-machining have been investigated and mechanical testing of selected nano-structures have also been reported.
|
40 |
Design and Analysis of Morphing Wing for Unmanned Aerial VehiclesGalantai, Vlad Paul 04 December 2012 (has links)
This study is concerned with the design and development of a novel wing for UAVs that morphs seamlessly without the use of complex hydraulics, servo motors and controllers. The selected novel design is characterized by a high degree of flight adaptability and improved performance with a limited added weight. These characteristics were attained through the use of shape memory actuators in an antagonistic fashion. Unlike compliant actuators, the antagonistic setup requires the thermal energy to deform the wing but not to maintain its deformed shape. Structural analysis based upon safety factors specified by FAR23 standards and aerodynamic analysis using FLUENT were conducted on the novel design to validate its suitability as a viable wing for UAVs. In addition, thermal conditioning of the shape memory actuators was conducted using a specially designed programmable controller. This thesis does not concern itself with the design of a skin that accommodates the shape changes.
|
Page generated in 0.0524 seconds