• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quality Inspection of Screw Heads Using Memristor Neural Networks

Liu, Xiaojie 01 December 2019 (has links)
Quality inspection is an indispensable part of the production process of screws for hardware manufactories. In general, hardware manufactories do the quality test of screws by using an electric screwdriver to twist screws. However, there are some limitations and shortcomings in the manual inspection. Firstly, the efficiency of manual inspection is low. Second, manual inspection is difficult to achieve continuous working for 24 hours, which will make a high wage cost. In this thesis, in order to enhance the inspection efficiency and save test costs, we propose to use the image recognition technology of memristor neural networks to check the quality of screws. Here, we discuss different training models of neural networks, namely: convolutional neural networks, one-layer memristor neural network with fixed learning rates. By using the dataset of 8,202 screw head images, experimental results show that the classification accuracy of CNNs and memristor neural networks can achieve 96% and 90%, respectively, which prove the effectiveness of the proposed method.

Page generated in 0.0526 seconds