• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Soft Matter : Routes To Rheochaos, Anomalous Diffusion And Mesh Phases

Ganapathy, Rajesh 09 1900 (has links)
Soft condensed matter (SCM) systems are ubiquitous in nature. SCM systems contain mesoscopic structures in the size range 10 nm to 1 am that are held together by weak entropic forces. These materials are therefore easily perturbed by external fields such as shear, gravity and electric and magnetic fields and are novel systems for studying non-equilibrium phenomena. The elastic constants of these materials are ≈ 109 times smaller than conventional atomic fluids and hence it is possible to measure the viscoelastic response of these materials using commercial instruments such as rheometers. The relaxation time in SCM systems are of the order of milliseconds as compared to atomic systems where relaxation times are of the order of picoseconds. It is easy to study the effect of shear on SCM, as the shear rates attainable by commercial rheometers are of the order of the inverse of their relaxation times. The dynamics of SCM systems and their local rheological properties obtained using the method of probe diffusion can be quantified through dynamic light scattering experiments. The structure of SCM systems can be quantified using diffraction techniques such as small angle x-ray scattering. In this thesis we report experimental studies on the linear and nonlinear rheology and the dynamics of surfactant cetyltrimethylammonium tosylate (CTAT), which forms cylindrical wormlike micelles, studied using bulk rheology and dynamic light scattering (DLS) technique, respectively. We have also studied the phase behaviour of the ternary system formed by cetyltrimethylammonium 3-hydroxy-napthalene 2-carboxylate (CTAHN), sodium bromide (NaBr) and water using small angle x-ray scattering (SAXS). In Chapter 1, we discuss why SCM systems are suitable for studying non-equilibrium phenomena such as the effect of shear on the structure and dynamics of condensed matter. This is followed by a discussion on the chemical structure, phase behaviour and self assembling properties of the amphiphilic molecules in water. We then discuss the intermacromolecular forces such as van der Waals interaction, the screened Coulomb repulsion and hydrophobic and hydration forces. The systems that have been the subject of our experimental studies, viz. CTAT and CTAHN/NaBr/water have also been discussed in detail. This is followed by a theoretical background of linear and nonlinear rheology, dynamic light scattering and small angle x-ray scattering techniques. Next we describe the stress relaxation mechanisms in wormlike micelles. This is followed by a discussion on some standard techniques of nonlinear time series analysis, in particular the evaluation of the delay time L, the embedding dimension m, the correlation dimension ν and the Lyapunov exponent λ. We have also mentioned a few examples of experimental systems where chaos has been observed. We have also discussed in detail the various routes to chaos namely, the period-doubling route, the quasiperiodic route and the intermittency route. The concluding part of this chapter summarises the main results of the thesis. Chapter 2 discusses the experimental apparatus used in our studies. We have discussed the different components of the MCR-300 stress-controlled rheometer (Paar Physica, Germany). The rheo-small angle light scattering experiments and the direct visualisation experiments done using a home-made shear cell are also discussed. Next we describe the various experiments that can be done using a commercial rheometer. The frequency response and flow experiments have been discussed with some examples from our own work on entangled, cylindrical micelles. This is followed by a discussion on the various components of our dynamic light scattering (DLS) setup (Brookhaven Instruments, USA). Particle sizing of submicrometer colloidal spheres using our DLS setup has been discussed with an example of an angle-resolved DLS study of 0.05µm polystyrene colloids. Next we describe the various components of the SAXS setup (Hecus M. Braun, Austria). As an example application of SAXS we have quantified the structure of the lamellar phase formed by the surfactant CTAHN/water. We finally describe the sample preparation methods employed by us for the different experiments. Our nonlinear rheology experiments on viscoelastic gels of surfactant CTAT (cCT AT= 2wt%) in the presence of salt sodium chloride (NaCl) at various concentrations has been discussed in Chapter 3. We observe a plateau in the measured flow curve and this is attributed to a mechanical instability of the shear banding type. The slope of this plateau can be tuned by the addition of salt NaCl. This slope is due to a concentration difference between the shear bands arising from a Helfand-Fredrickson mechanism. This is confirmed by the presence of a “Butterfly” light scattering pattern in SALS experiments performed simultaneously with rheological measurements. We have carried out experiments at six different salt concentrations 10mM < cN aCl<1M, which yield plateau slopes (α) ranging from 0.07 < α < 0.4. We find that a minimum slope of 0.12, corresponding to a salt concentration of 25mM NaCl, is essential to see a “Butterfly” pattern indicating the onset of flow-concentration coupling at this α value. After this we turn our attention to stress/shear rate relaxation experiments. The remainder of this chapter is split in four parts. We show in Part-I that the routes to rheochaos in stress relaxation experiments is via Type-II intermittency. Interestingly in shear rate relaxation, the route is via Type-III intermittency. We also show that flow-concentration coupling is essential to see the route to rheochaos. This section also brings out the crucial role played by orientational ordering of the nematics during rheochaos using SALS measurements performed simultaneously with rheological measurements. In part-II, we study the spatio-temporal dynamics of the shear induced band en route to rheochaos. Our direct visualisation experiments show that the complex dynamics observed in stress/shear rate relaxation measurements during the route to rheochaos is a manifestation of the spatio-temporal dynamics of the high shear band. In part-III, we describe the results of our stress/shear rate relaxation measurements at a fixed shear rate/stress with temperature as the control parameter and thereby control the micellar length. We see the Type-II intermittency route to rheochaos in stress relaxation measurements and the Type-III intermittency route to rheochaos in shear rate relaxation measurements. We conclude this section by showing the results of linear rheology measurements carried out at different temperatures. We estimate the mean micellar length ¯L, reptation time τrepand the breaking time τbreak. We show that L¯ increases by ≈ 58%, as the sample goes through the route to rheochaos. In Part-I of this chapter we had only qualitatively discussed the correlations between the measured time series of stress and the VH scattered intensity during the Type-II intermittency route to rheochaos. In part-IV we have attempted to quantify the correlations between the two time series using the technique of linear and nonlinear Granger causality. We have also studied the phase space dynamics of the two time series using the technique of Cross Recurrence Plots. We show that there exists a causal feedback mechanism between the stress and the VH intensity with the latter having a stronger causal effect. We have also shown that the bivariate time series share similar phase space dynamics using the method of Cross Recurrence Plots. In chapter 4, we have studied the dynamics of wormlike micellar gels of surfactant CTAT using the DLS technique. We report an interesting result in the dynamics of these systems: concentration fluctuations in semidilute wormlike-micelle solutions of the cationic surfactant Cetyltrimethylammonium Tosylate (CTAT) at wavenumber q have a mean decay rate α qz, with z -̃1.8, for a wide range of surfactant concentrations just above the overlap value c∗. The process we are seeing is thus superdiffusive, like a L´evy flight, relaxing on a length scale L in a time of order less than L2 . The rheological behaviour of this system is highly non-Maxwellian and indicates that the micelle-recombination kinetics is diffusion-controlled (DC) (micelles recombine with their original partners). With added salt (100mM NaCl) the rheometric behaviour turns Maxwellian, indicating a crossover to a mean-field (MF) regime (micelles can recombine with any other micellar end). The concentration fluctuations, correspondingly, show normal diffusive behaviour. The stress relaxation time, moreover is about twenty times slower without salt than with 100mM NaCl. Towards the end of this chapter, we propose an explanation of these observations based on the idea that stress due to long-lived orientational order enhances concentration fluctuations in DC regime. In the previous chapter we had studied the dynamics of wormlike micellar gels of pure CTAT 2wt% and found superdiffusive relaxation of concentration fluctuations due to a nonlinear coupling of long-lived stress and orientational fluctuations to the con- centration. In chapter 5 we present results from dynamic light scattering experiments to quantify the diffusive motion of polystyrene (PS) colloids in the same system. This chapter is split in two parts. In Part-I, we discuss dynamics of PS particles of radius 115 nm and 60 nm in CTAT 2wt%. The radius of the colloidal spheres is comparable to the mesh size ξ = 80 nm of the wormlike micellar network and hence we are probing the network dynamics. We find that ∆r2(t) is wavevector independent at small and large lag times. However at intermediate times, we find an anomalous wavevector dependence which we believe arises from the rapid restructuring of the gel network. This anomalous wavevector dependence of ∆r2(t) disappears as the temperature is increased. In Part-II we discuss the dynamics of PS particles of radius 25 nm and 10 nm, smaller than ξ, in CTAT 1wt% & 2wt%. We once again find an anomalous wavevector dependence of ∆r2(t) at intermediate times for the 2wt% sample. Surprisingly, at large times the particle motion is not diffusive, rather ∆r2(t) saturates. We do not have a clear understanding of this as yet. Also for the 10 nm particle, the motion at small lag times is superdiffusive. The motion of these particles is probably influenced by the superdiffusion of concentration fluctuations observed in pure CTAT 2wt% system (chapter 4). In chapter 6, we report the observation of an intermediate mesh phase with rhom- bohedral symmetry, corresponding to the space group R¯3m, in the ternary system consisting of CTAHN/NaBr/water. It occurs at lower temperatures between a random mesh phase (LDα ) and a lamellar phase (Lα) on increasing the surfactant concentration φs. The micellar aggregates, both in the intermediate and random mesh phases, are found to be made up of a two-dimensional network of rod-like segments, with three rods meeting at each node. SAXS studies also show the presence of small angle peaks corresponding to ad−spacing of 25 nm. Freeze fracture electron microscopy results shows that this peak may correspond to the presence of nodule like structures with no long-range correlations. The thesis concludes with a summary of main results and a brief discussion of the scope for future work in Chapter 7.
2

Shear Induced Transitions In Mixed Surfactant Systems And Anisotropic Colloids

Vikram Rathee, * 05 1900 (has links) (PDF)
This thesis deals with the non-equilibrium phenomena under shear observed mainly in bilayer forming liquid crystalline phases of mixed surfactant systems, anisotropic colloidal dispersions as well as Langmuir monolayers of membrane peptides. To correlate the structural transitions under shear with the mechanical properties or flow behaviour, the rheological measurements are combined with different techniques such as optical imaging (bright field, polarizing or confocal), small angle light scattering as well as small angle x-ray scattering (Rheo-SAXS) measurements. The bilayer forming phases that have been studied consist of mixed surfactant system formed by a mixture of ionic amphiphiles with strong binding organic counter ions. The propensity of the hydrophobic counterion to modify the spontaneous curvature at the micelle-water interface gives rise to a rich equilibrium phase behaviour consisting of different bilayer forming liquid crystalline mesophases in between the hexagonal and lamellar phases. The liquid crystalline mesophases presently examined under shear are the weakly swollen isotropic and lamellar phases as well as the random and rhombohedral mesh phases. The main motivation of the thesis was to examine the stability of these phases under shear since all the existing studies so far on shear induced structural transitions are mainly confined to highly swollen isotropic sponge phase of interconnecting bilayers that can transform to a lamellar phase consisting of a stack of bilayers with 1D quasi long range order or a dilute lamellar phase is shear transformed to a collapsed surfactant rich lamellar phase coexisting with excess solvent at Peclet Number greater than 1. The present study revealed for the first time a shear reversible crystallization above the equilibrium crystallization temperature in the weakly swollen isotropic and lamellar phases formed in the SDS-PTHC-water system where the structural transition is feasible through a shear induced segregation/microphase separation of the hydrophobic counterions to tune the curvature of the bilayer-water interface. These results incited us to examine the role of shear on another class of mesophases that are structurally similar to lamellar phase but with a non-uniform interfacial curvature of the bilayers identified as the intermediate mesh phases. Mesh phases are formed by a 1D stack of perforated bilayers with quasi-long range order where the water filled pores or curvature defects can have a liquid-like ordering in the plane of the bilayers as in a random mesh phase or the pores can have a square or hexagonal ordering locking into a three dimensional lattice with either tetragonal or rhombohedral symmetry to form Tα or R3m ordered mesh phases. Two characteristic features of the mesh phases that is noteworthy are i) the non-uniform mean curvature for the bilayers formed by 3-coordinated hexagonal mesh or the 4-coordinated square mesh; ii) the elasticity of the bilayers forming the hexagonal or square ordered mesh in R3m or Tα phases as opposed to the fluid-like bilayers with zero surface shear modulus in the random mesh or classical lamellar phases (Lα). Hence the structural similarity as well as differences of the mesh phases with the lamellar phase raises some pertinent questions regarding the stability of surfactant mesh phases under shear. Two striking consequences of shear flow on the random and ordered mesh phases of a cationic-anionic mixed surfactant system were revealed: a shear-induced 3D ordering of the curvature defects in LDα phase as well as a hydrodynamic instability wherein a sequence of structural rearrangements leading to buckling instability gives rise to unstable flows in the R3m phase. These studies on shear induced structural transitions on partially ordered mesophases is juxtaposed with the study on another class of systems that were examined under shear comprising dispersion of anisotropic colloidal rods. We demonstrate that these suspensions shear thicken at low concentrations (≥ 25 %) and origin of shear thickening is formation of stress bearing hydrodynamic clusters rather than order-disorder transition. Finally we also examine the rheological properties of a monolayer of membrane peptide Alamethicin where the coexistence of solid-like domains in a backround of liquid expanded phase at high surface concetrations gives rise to a dense anisotropic suspension in 2D. The rheological properties of these jammed fluid/fluid interfaces formed by membrane proteins is well explained by the soft glassy rheology model proposed earlier in the context of 3D soft glasses, comprising emulsions, foams, colloidal glasses and gels. Chapter 1 starts with a general introduction of soft condensed matter systems and then we proceed to describe surfactant systems, their phase behaviour and self assembly. The formation of liquid crystalline phases in pure surfactant systems and in presence of additives such as salt or counterions are discussed. A brief introduction to colloids is explained further. This is followed by the discussion on the inter-macromolecular forces governing soft matter systems such as van der Waals interaction, the screened Coulomb repulsion, hydrogen bond, depletion, peristaltic, hydrophobic and hydration forces and steric repulsion. We further explain the systems studied and their phase behaviour at different concentrations formed by SDS-PTHC-water, CTAB-SHN-water system in detail. In the next section we describe the characterization of different liquid crystalline phases viz. nematic, hexagonal, isotropic, lamellar, intermediate mesh and ribbon phases using cross polarizing optical microscopy, small angle x-ray and rheology. Then, a theoretical background of linear and nonlinear rheology, optical/confocal microscopy and x-ray scattering techniques are given. This is followed by discussion on flow properties of colloidal suspensions in dilute and semi-dilute regime and finally shear thickening phenomena observed in concentrated suspensions. We discuss shear thickening phenomena observed in anisotropic precipitated calcium carbonate (PCC) colloids. We have also discussed shear induced phase and structural transitions observed in different liquid crystalline phases. Chapter 2 discusses the experimental apparatus and techniques used in our studies. We have discussed the different components of the MCR-300 and 101 stress-controlled rheometer (Paar Physica, Germany). The cross polarizing optical microscopy in transmission and reflection mode using a home-made shear cell and in built set-up respectively, and small angle light scattering set-up are discussed. Next, we discuss in-situ small angle x-ray rheology setup, a home made Couette cell installed at RRI Bangalore, Couette installed at SWING beamline Soleil, Paris, France and parallel plate setup at PETRA III, Germany. This is followed by discussion on sample preparation and synthesis technique of silica colloidal rods and modification of surface potential using a thermo-responsive polymer. Further, we explain the algorithm to track rods and analysis of SAXS 2D diffraction pattern. Flow behaviour of different phases formed in SDS-PTHC-water system are described in Chapter 3. This chapter has been divided into four sections. In section I, we describe the phase behaviour and rheology of micellar solution at different surfactant concentrations (ϕ) and molar ratios (α = [PTHC]/[SDS]) of two components. At ϕ = 0.3, a transition from viscous to visco-elastic behaviour is observed with increasing α from 0 to 0.3. Zero shear viscosity shows a non-monotonic behaviour with increasing α and reveals a maxima at α = 0.15. At low α, we observe a Newtonian behaviour which changes to shear thinning behaviour with increasing α and finally again retains the Newtonian behaviour. Dynamic light scattering studies in conjunction with presence of nematic phase made up of disks (confirmed by cross-polarizing optical microscopy) at higher α > 0.325, suggest that the drop in zero shear viscosity is due to decrease in length of the micelles from rods to disks. A similar behaviour is observed with increasing ϕ at constant α = 0.2, 0.25, 0.6. A change in the morphology of micellar aggregates with increase in α is expected in mixed surfactant systems with strongly binding counterions. However the change in morphology of micellar aggregates with surfactant content in surprising which is witnessed for the first time in mixed surfactant systems. In section II of this chapter we discuss the phase behaviour and rehological properties of different liquid crystalline phases formed in SDS-PTHC-water system at ϕ = 0.4, and varying α from 0 to 0.4. Using deutrium nuclear magnetic resonance (NMR) studies we show that the transition from hexagonal phase at α = 0, to lamellar phase at α = 0.4 occurs through a nemtaic phase of rods at α = 0.05 and nemtaic phase of disks at α = 0.2 through an isotropic phase of rods at α = 0.15. NMR studies reveal a decrease in variation of the quadrupole splitting across the transition from NC to ND. The visco-elastic and flow behaviour of the different phases were examined. A decrease in the steady shear viscosity across the different phases with increasing α suggests a decrease in the aspect ratio of the micellar aggregates. From the transient shear stress response of the NC and ND nematic phases in step shear experiments, they were characterized to be tumbling and flow aligning, respectively. Our studies reveal that by tuning the morphology of the surfactant micelles, strongly binding counterions modify the phase behaviour and rheological properties of concentrated surfactant solutions. In section III, we discuss shear induced phase transition in SDS-PTHC-water system using in-situ rheo-optical imaging and in-situ rheo-SAXS. Bilayer forming liquid crystalline phases namely isotropic (Li - optically isotropic) and lamellar (Lα - optically birefringence) are formed at α = 1.5, ϕ = 0.4 and α = 1, ϕ = 0.5. Both phases co-exist with excess solvent and remain fully swollen at temperature T > 50 oC. We have constructed a dynamic phase diagram in the parameter space of shear rate and temperature which demonstrate a novel shear induced phase transition to a crystalline phase (Lc) above a critical shear rate. At constant shear rate, the increase in viscosity is accompanied by presence of birefringent texture of Lα phase after a waiting time (t) which decreases with increasing shear rate. The Lc phase is stable under shear and melts back to equilibrium Li phase once shear is stopped. At higher temperature a transition from Li → Lα is observed. In-situ small angle x-ray scattering reveals an evolution of additional peaks in small as well as wide angle region which does not evolve any further once the viscosity reaches a maxima. The Lc phase obtained under shear at different shear rates can be indexed to a triclinic lattice with the lattice parameters depending on shear rates. We propose that the possible origin of phase transition is re-distribution of counterions under shear which results in counterion-rich and counterion-poor region. This counterion rich region results in crystalline Lc phase. In addition to revealing a unique class of non-equilibrium phase transition, the present study urges a unique approach toward understanding shear-induced phenomena in concentrated meso-phases of mixed amphiphilic systems In section IV we propose a shear induced nucleation and growth of crystalline phase in metastable bilayer forming Li and Lα phases. Nucleation and growth of crystalline phase ac-celerated by shear exhibits a power law dependence on time. The time of nucleation strongly depends on the shear rate with different exponents for different phase compositions. The crystalline phase formed under the influence of shear is stable and irreversible for tempera-ture < 28 oC. The crystal structure obtained under shear can be indexed to a triclinic unit cell with different lattice parameters depending on the shear rate and concentration probed. In Chapter 4, we discuss shear induced transitions observed in mesh phases formed in cationic surfactant system CTAB in the presence of strongly binding counterions SHN formed at different surfactant concentration (ϕ) and molar ratio (α). Random mesh phase (LDα) formed at ϕ = 0.3, 0.4, 0.5 and α = 1 are identified as stack of bilayers having curvature defects in form of water filled pores in the plane of bilayers . These pores do not have any long range correlation either in-plane or across the plane. A 3D ordered mesh phase (R3m) is formed at α = 1 and ϕ = 0.6, where these pores have in-plane and out of plane positional correlation and locked into a 3D lattice with rhombohedral symmetry. These phases are easily identified from small angle x-ray scattering studies wherein LDα a diffuse peak corresponding to in-plane defect spacing (ddef ) is observed along with lamellar d-spacing (d). However several additional peaks along with lamellar peak are observed for R3m phase revealing a long range correlation of pores. By shearing different LDα phases formed at different ϕ′s, we D phases formed probe the effect of shear far and near to the R3m phase boundary. When Lα at ϕ = 0.3 and 0.4 are sheared at constant shear rate, we observe a structural transition to an onion phase which is accompanied by increase in viscosity at the onset of the transition. D When Lα phase formed near R3m phase at ϕ = 0.5 is sheared, we observe a decrease in viscosity which is accompanied by the presence of a sharp peak near the diffuse peak corresponding to ddef along with several other small as well as wide angle peaks. All these D phase. We propose that peaks can be indexed to R3m phase co-existing with equilibrium Lα the locking of the defects into a 3D lattice occurs when the in-plane correlation length (ddef ) is larger than the bilayer periodicity (d). Prior to appearance of sharp peak near ddef , we observe an a-orientation of lamellae i.e. bilayers align along the shear-gradient plane where shear is likely to increase the length of cylindrical arrays or rods. A shear driven increase in the length of the rods implies a larger radius of this in-plane circle forming the pores, leading to a lower curvature and consequently a lower curvature energy. This increase in average size of the pores under shear favored by the lower curvature energy is expected to increase the in-plane as well as the trans-bilayer correlation length of the defects. The Lα → R3m phase transition is also observed in another system cetylpyridinium chloride (CPCl)-SHN-water. Thus this type of transition is general feature of random mesh phases when sheared near R3m phase in the equilibrium phase diagram. A thixotropic behaviour with yield stress (σy = 500 Pa, is observed when equilibrium R3m phase is sheared. When the shear stress crosses a threshold value of 1000 Pa, we observe an avalanche behaviour with drop in viscosity of more than 4 orders of magnitude. This drop is accompanied by appearance of several sharp peaks which can be indexed to two or three R3m phases. The similar transition is observed under shear in R3m phase formed in CPCl-SHN-water system. We propose that shearing a 3D ordered lattice of defects as in the R3m phase leads to additional structural transitions, though the rhombohedral symmentry is retained. In Chapter 5, we discuss shear thickening observed in colloidal rods. Using rheology combined with microscopy, we demonstrate that origin of shear thickening in colloidal rods is the formation of hydroclusters and not order-disorder transition. We observe continuous (CST) as well as discontinuous shear thickening (DST) at volume fractions of colloidal sus-pension at 25 % and > 30 % respectively. In DST, in controlled stress measurements, flow curve exhibits an S-shaped flow curve (stress vs. shear rate) where we observe a negative slope in shear thickening regime. By combining fast confocal microscopy with rheometer (parallel plate geometry), we investigate the possible mechanism for shear thickening in our suspension and rule out order-disorder transition. This indicates that the shear thickening might be a consequence of formation of hydroclusters which is confirmed by modifying sur-face properties of these colloids where a thermo responsive microgel PNIPAM was used as a shell to the silica core. The advantage of using PNIPAM is that the polymer brush remains fully swollen below the lower critical solution temperature (LCST) and shrinks above the LCST (34 oC) acting as hard particles. Thus by controlling the temperature, the interparticle separation can be tuned. We observe a pure shear thinning and shear thickening behaviour below and above LCST respectively. We show that by changing the interparticle separation we can avoid hydrocluster formation arsing due to the hydrodynamic lubrication forces re-sponsible for the shear thickening. The calculation the order parameter and measurements on core-shell particles illustrate that microscopic origin of shear thickening is the formation of hydroclusters and not order-disorder transition. Chapter 6 deals with the 2D interfacial rheology of antibiotic alamethecin film at air-water interface. Fluorescence microscopy of alamethicin monolayers revealed a coexistence of liquid expanded (LE) and solid phases at the surface concentrations studied. Interfa-cial oscillatory shear measurements on alamethicin monolayers indicate that its viscoelastic properties are determined by the area fraction of the solid domains. The role of zwitterionic phospholipids dioleoylphosphatidyl choline (DOPC) and dioleoylphosphatidyl ethanolamine (DOPE) on the peptide aggregation behaviour was investigated. Fluorescence microscopy of alamethicin/phospholipid monolayers revealed an intermediate phase (I) in addition to the solid and LE phase. In mixed monolayers of phospholipid (L)/alamethicin (P), with increase in L/P, the monolayer transforms from a viscoelastic to a viscous fluid with the increase in area fraction of the intermediate phase. Further, a homogeneous mixing of alamethicin/lipid molecules is observed at L/P>4. Our studies also confirm that the visco-elasticity of alame-thicin/phospholipid monolayers is closely related to the alamethicin/phospholipid interac-tions at the air-water interface.

Page generated in 0.0459 seconds