• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Régulation du c-di-GMP et rôle de ce messager secondaire dans la formation de pili de type IV chez Clostridium difficile.

Bordeleau, Éric January 2014 (has links)
Malgré la découverte du c-di-GMP en 1987, ce n’est que durant la dernière décennie que l’importance de ce messager secondaire dans la régulation des phénotypes bactériens a été exposée. Synthétisé par des diguanylate cyclases (DGC) et dégradé par des phosphodiestérases spécifiques (PDE), le c-di-GMP est prédit pour être un messager secondaire très répandu chez les bactéries et pratiquement exclusif à celles-ci. Le c-di-GMP est particulièrement reconnu pour son rôle dans la transition des bactéries motiles et planctoniques vers la formation de biofilm chez les bactéries à Gram négatif telles qu’Escherichia coli, Pseudomonas aeruginosa et Vibrio cholerae. De plus, le c-di-GMP est impliqué dans la régulation de l’expression de certains facteurs de virulence chez certaines bactéries. Ainsi, il est possible de révéler les mécanismes de régulation de certains phénotypes importants par l’étude de la signalisation à c-di-GMP dans une bactérie donnée. Clostridium difficile est une bactérie pathogène causant des diarrhées nosocomiales, des colites et pouvant causer des décès chez l’Homme. Les phénotypes impliqués dans la pathogenèse de C. difficile et leur régulation demeurent en grande partie méconnus. Le génome de C. difficile 630 était prédit être capable de coder pour 37 DGC et PDE putatives, un nombre en apparence élevé pour une bactérie à Gram positif. L’objectif global de mon doctorat était de déterminer si la signalisation à c-di-GMP était fonctionnelle chez C. difficile puis de déterminer le rôle du c-di-GMP chez cette bactérie. Dans un premier projet, mes travaux de doctorat ont permis de démontrer que la majorité des 37 DCG et PDE putatives chez C. difficile 630 sont fonctionnelles. Les 31 DCG et PDE les plus conservées dans les différentes souches de C. difficile ont été exprimées dans V. cholerae afin d’évaluer indirectement leur capacité de synthèse et de dégradation du c-di-GMP en mesurant leur impact sur motilité et la formation de biofilm de V. cholerae. La surexpression d’une DGC chez V. cholerae réduit la motilité par flagelle et augmente la formation de biofilm, alors que l’inverse est observé lors de la surexpression d’une PDE. De plus, l’activité d’une DCG, CD1420 (renommée DccA, CD630_14200), et une PDE, CD0757 (renommée CD630_07570) a été démontrée plus explicitement par des essais enzymatiques in vitro. Ainsi, ce projet a exposé l’important potentiel de la signalisation à c-di-GMP chez C. difficile, jusqu’alors étudiée presque exclusivement chez les bactéries à Gram négatif. Dans un deuxième projet, mes travaux de doctorat ont permis de démontrer le rôle des pili de type IV (T4P) dans l’agrégation de C. difficile et la régulation de leur expression par un riborégulateur à c-di-GMP. Les riborégulateurs sont des structures ARN situées dans la région 5’UTR des gènes capables de réguler l’expression des gènes en aval en fonction de la liaison d’un métabolite spécifique. Parmi les 16 riborégulateurs à c-di-GMP prédits dans le génome de C. difficile 630, le riborégulateur c-di-GMP-II Cdi2_4 est situé en amont du locus principal de synthèse de T4P. Mes travaux ont permis de montrer que l’augmentation de la concentration de c-di-GMP intracellulaire se traduit par une augmentation de l’expression des gènes de T4P, la formation de T4P à la surface des cellules et l’agrégation dépendante des T4P. De plus, le mécanisme de régulation du riborégulateur Cdi2_4 a été démontré in vitro. La liaison du c-di-GMP au riborégulateur Cdi2_4 prévient la formation d’un terminateur transcriptionnel et favorise ainsi la transcription des gènes de T4P en aval. Depuis la mise en évidence de la signalisation à c-di-GMP chez C. difficile dans la première partie de mon doctorat, un certain nombre de phénotypes régulés par c-di-GMP chez cette bactérie ont pu être déterminés ou prédits. Notamment, le c-di-GMP inhibe la transcription des gènes des flagelles en se liant au riborégulateur c-di-GMP-I Cd1 en amont et inhibe indirectement la production des toxines TcdA et TcdB. La démonstration de l’effet positif du c-di-GMP sur l’agrégation des cellules via les T4P, dans la deuxième partie de mon doctorat, contribue à notre compréhension de la signalisation à c-di-GMP chez C. difficile. Il apparait que le c-di-GMP inhibe la motilité et favorise la formation de structures pluricellulaires chez C. difficile à l’instar de plusieurs bactéries, néanmoins par des mécanismes de régulation distincts.
2

Premiers mécanismes de régulation d'exlBA, le facteur de virulence des souches de Pseudomonas aeruginosa de type PA7 / First regulatory mechanisms of exlBA, virulence factor of Pseudomonas aeruginosa PA7-like strains

Berry, Alice 09 May 2019 (has links)
Pseudomonas aeruginosa est un pathogène opportuniste responsable du développement de maladies nosocomiales. Il provoque des infections en employant différents facteurs de virulence dont le principal, associé aux infections sévères, est le système de sécrétion de type 3 (SST3). Les souches de type PA7, taxonomiquement marginales, sont dépourvues de SST3 et leur pouvoir pathogène repose sur le nouveau système de virulence ExlBA. Ce SST5b, ou TPS, est composé du transporteur ExlB qui permet la translocation d’ExlA, une toxine induisant la perméabilisation de la membrane plasmique des cellules eucaryotes.Ce travail représente la première investigation des mécanismes de régulation du système ExlBA. Ainsi, il a été mis en évidence que la déplétion en fer est un signal d’activation de l’expression des gènes exlBA. De plus, les deux principaux messagers secondaires, AMPc et di-GMPc, sont impliqués dans la régulation du TPS. En effet, la voie CyaB-AMPc/Vfr, connue pour réguler le SST3, contrôle la toxicité des souches de type PA7 grâce à une activation transcriptionnelle directe des gènes exlBA, qui peut être stimulée par la chélation du calcium extracellulaire. Parallèlement, alors qu’ExlA était supposée être sécrétée pour agir sur les cellules eucaryotes, cette étude a montré que la toxine doit être exposée à la surface de la membrane bactérienne pour provoquer la lyse de ces cellules, ceci par un mécanisme dépendant du di-GMPc. Effectivement, une forte concentration en di-GMPc empêche la sécrétion d’ExlA en induisant de façon post-traductionnelle son maintien au niveau du transporteur ExlB, ce qui favoriserait l’action de la toxine sur les membranes eucaryotes. / Pseudomonas aeruginosa is an opportunistic pathogen responsible for nosocomial diseases. It provokes infections due to several virulence factors. Among them the most aggressive is the type 3 secretion system (T3SS), associated with severe infection. PA7-like strains, that are taxonomic outliers, lack the T3SS but are still pathogenic thanks to the novel virulence system ExlBA. This T5bSS, or TPS, is composed by the transporter ExlB that allows translocation of ExlA toxin to induce permeabilisation of eukaryotic cell membrane.This study is the first investigation of regulatory mechanisms that modulate ExlBA. It provided evidence that iron depletion is an activator signal of exlBA gene expression. Furthermore, the two main second messengers, cAMP and c-di-GMP, are involved in ExlBA regulation. CyaB-cAMP/Vfr pathway, known to regulate T3SS, controls toxicity of PA7-like strains through direct transcriptional activation of exlBA. This pathway may be stimulated by an extracellular calcium chelation. At the same time, while ExlA was supposed to be secreted to kill eukaryotic cells, this work showed that the toxin must be exposed at the surface of the bacterial membrane to cause lysis of these cells, by a mechanism dependent on c-di-GMP. Indeed, a c-di-GMP high concentration prevents ExlA secretion by inducing its maintenance at the ExlB transporter, that would promote the action of the toxin on eukaryotic membranes.

Page generated in 0.3521 seconds