• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geração evolucionária de heurísticas para localização de defeitos de software / Evolutionary generation of heuristics for software fault localization

Freitas, Diogo Machado de 24 September 2018 (has links)
Submitted by Franciele Moreira (francielemoreyra@gmail.com) on 2018-10-30T13:30:59Z No. of bitstreams: 2 Dissertação - Diogo Machado de Freitas - 2018.pdf: 1477764 bytes, checksum: 73759c5ece96bf48ffd4d698f14026b9 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-10-30T13:41:38Z (GMT) No. of bitstreams: 2 Dissertação - Diogo Machado de Freitas - 2018.pdf: 1477764 bytes, checksum: 73759c5ece96bf48ffd4d698f14026b9 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-10-30T13:41:38Z (GMT). No. of bitstreams: 2 Dissertação - Diogo Machado de Freitas - 2018.pdf: 1477764 bytes, checksum: 73759c5ece96bf48ffd4d698f14026b9 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-09-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Fault Localization is one stage of the software life cycle, which demands important resources such as time and effort spent on a project. There are several initiatives towards the automation of the fault localization process and the reduction of the associated resources. Many techniques are based on heuristics that use information obtained (spectrum) from the execution of test cases, in order to measure the suspiciousness of each program element to be defective. Spectrum data generally refers to code coverage and test results (positive or negative). The present work presents two approaches based on the Genetic Programming algorithm for the problem of Fault Localization: a method to compose a new heuristic from a set of existing ones; and a method for constructing heuristics based on data from program mutation analysis. The innovative aspects of both methods refer to the joint investigation of: (i) specialization of heuristics for certain programs; (ii) application of an evolutionary approach to the generation of heuristics with non-linear equations; (iii) creation of heuristics based on the combination of traditional heuristics; (iv) use of coverage and mutation spectra extracted from the test activity; (v) analyzing and comparing the efficacy of methods that use coverage and mutation spectra for fault localization; and (vi) quality analysis of the mutation spectra as a data source for fault localization. The results have pointed to the competitiveness of both approaches in their contexts. / Localização de Defeitos é uma etapa do ciclo de vida de software, que demanda recursos importantes tais como o tempo e o esforço gastos em um projeto. Existem diversas iniciativas na direção da automação do processo de localização de defeitos e da redução dos recursos associados. Muitas técnicas são baseadas heurísticas que utilizam informação obtida (espectro) a partir da execução de casos de teste, visando a medir a suspeita de cada elemento de programa para ser defeituoso. Os dados de espectro referem-se, em geral, à cobertura de código e aos resultados dos teste (positivo ou negativo). O presente trabalho apresenta duas abordagens baseadas no algoritmo Programação Genética para o problema de Localização de Defeitos: um método para compor automaticamente novas heurísticas a partir de um conjunto de heurísticas existentes; e um método para a construção de heurísticas baseadas em dados oriundos da análise de mutação de programas. Os aspectos inovadores de ambos os métodos referem-se à investigação conjunta de: (i) especialização de heurísticas para determinados programas; (ii) aplicação de abordagem evolutiva para a geração de heurísticas com equações não lineares; (iii) criação de heurísticas a partir da combinação de heurísticas tradicionais; (iv) uso de espectro de cobertura e de mutação extraídos da atividade de teste; (v) análise e comparação da eficácia de métodos que usam os espectros de cobertura e de mutação para a localização de defeitos; e (vi) análise da qualidade dos espectros de mutação como fonte de dados para a localização de defeitos. Os resultados apontaram competitividade de ambas as abordagens em seus contextos.

Page generated in 0.0899 seconds