• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Systems metabolic engineering through application of genome-scale metabolic flux modeling

Nazem Bokaee, Hadi 16 April 2014 (has links)
Systems metabolic engineering has enabled systematic studying of microbes for modifying their genetic contents, analyzing their metabolism, and designing new capabilities. One of the most commonly used approaches in systems metabolic engineering involves genome-scale metabolic flux modeling. These models allow generation of predictions of the global metabolic flux distribution in the metabolic network of organisms, in silico. With the current advances in genome sequencing technologies and the global demand for bio-based commodity chemicals and fuels, genome-scale models can help metabolic engineers propose design strategies while considering holistic behavior of the organism. In this research, novel tools and methodologies were developed to improve the future prospective of systems metabolic engineering with genome-scale modeling. To do this, an online web application (Synthetic Metabolic Pathway Builder and Genome-Scale Model Database, SyM- GEM) was first developed enabling the construction of synthetic metabolic pathway(s) and addition of those to synchronized genome-scale models. This addresses the need for an easy and universal way of creating models of engineered microbes with improved properties without the time-consuming inconvenience of synchronizing different formats and representations of genome- scale models prepared by different laboratories. The web application is freely available at http:www.mesb.bse.vt.edu/SyM-GEM. Then, a computational framework (Total Membrane Influx-Flux Balance Analysis, ToMI-FBA) was developed to allow for evaluating synthetic pathway use by different models. This enabled, for the first time, a computational guide for optimal host selection (for a specific metabolic engineering problem) and culture media formulation design to achieve the solution. Results showed that (i) L-valine improves isobutanol production by Bacillus subtilis, (ii) cellobiose increases ethanol selectivity by Clostridium acetobutylicum ATCC 824, and (iii) B. subtilis is an optimal host for artimisinate production. To further expand the capability of genome-scale models, an algorithm was developed (Genetic Algorithm-Flux Balance Analysis minimizing Total Unconstrained eXchange Flux, GA-FBA minimizing TUX) to help improve the fitness between metabolic fluxes predicted by genome-scale modeling and those obtained by 13C-tracing methods. Application of this method to the cyanobacterium Synechocystis PCC 6803 improved model accuracy by more than 50% for both heterotrophic and autotrophic growth. To generate even more realistic predictions of metabolic flux from genome-scale modeling, Raman spectroscopy was employed to help design biomass equations of microbial cells in different environmental conditions. To do this, the cellulose- consuming anaerobe Clostridium cellulolyticum ATCC 35319 was grown on cellobiose, and samples were obtained at different points of differentiation due to sporulation. Biomass composition was determined through Raman spectroscopy and traditional chemical analyses. A new genome-scale model of this organism (iCCE557) served as the basis for genome-scale model calculations. Model fitness improved upto 95% with these methods. Finally, to implement metabolic engineering strategies, regulatory RNA molecules (antisense RNAs) were designed to help target desired mRNA molecules in the metabolic network. Thermodynamic binding calculations were found to correlate with the efficiency of asRNA-mRNA binding and inhibition of mRNA translation. / Ph. D.
2

MATHEMATICAL MODELING OF <i>CLOSTRIDIUM THERMOCELLUM’S</i> METABOLIC RESPONSES TO ENVIRONMENTAL PERTURBATION

Adotey, Bless 01 January 2011 (has links)
Clostridium thermocellum is a thermophilic anaerobe that is capable of producing ethanol directly from lignocellulosic compounds, however this organism suffers from low ethanol tolerance and low ethanol yields. In vivo mathematical modeling studies based on steady state traditional metabolic flux analysis, metabolic control analysis, transient and steady states’ flux spectrum analysis (FSA) were conducted on C. thermocellum’s central metabolism. The models were developed in Matrix Laboratory software ( MATLAB® (The Language of Technical Computing), R2008b, Version 7.7.0.471)) based on known stoichiometry from C. thermocellum pathway and known physical constraints. Growth on cellobiose from Metabolic flux analysis (MFA) and Metabolic control analysis (MCA) of wild type (WT) and ethanol adapted (EA) cells showed that, at lower than optimum exogenous ethanol levels, ethanol to acetate (E/A) ratios increased by approximately 29% in WT cells and 7% in EA cells. Sensitivity analyses of the MFA and MCA models indicated that the effects of variability in experimental data on model predictions were minimal (within ±5% differences in predictions if the experimental data varied up to ±20%). Steady state FSA model predictions showed that, an optimum hydrogen flux of ~5mM/hr in the presence of pressure equal to or above 7MPa inhibits ferrodoxin hydrogenase which causes NAD re-oxidation in the system to increase ethanol yields to about 3.5 mol ethanol/mol cellobiose.

Page generated in 0.0809 seconds