• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling the Microstructural Evolution during Hot Deformation of Microalloyed Steels

Bäcke, Linda January 2009 (has links)
This thesis contains the development of a physically-based model describing the microstructural evolution during hot deformation of microalloyed steels. The work is mainly focused on the recrystallization kinetics. During hot rolling, the repeated deformation and recrystallization provides progressively refined recrystallized grains. Also, recrystallization enables the material to be deformed more easily and knowledge of the recrystallization kinetics is important in order to predict the required roll forces. Hot strip rolling is generally conducted in a reversing roughing mill followed by a continuous finishing mill. During rolling in the roughing mill the temperature is high and complete recrystallization should occur between passes. In the finishing mill the temperature is lower which means slower recrystallization kinetics and partial or no recrystallization often occurs. If microalloying elements such as Nb, Ti or V are present, the recrystallization can be further retarded by either solute drag or particle pinning. When recrystallization is completely retarded and strain is accumulated between passes, the austenite grains will be severely deformed, i.e. pancaking occurs. Pancaking of the grains provides larger amount of nucleation sites for ferrite grains upon transformation and hence a finer ferrite grain size is achieved. In this work a physically-based model has been used to describe the microstructural evolution of austenite. The model is built-up by several sub-models describing dislocation density evolution, recrystallization, grain growth and precipitation. It is based on dislocation density theory where the generated dislocations during deformation provide the driving force for recrystallization. In the model, subgrains act as nuclei for recrystallization and the condition for recrystallization to start is that the subgrains reach a critical size and configuration. The retarding effect due to elements in solution and as precipitated particles is accounted for in the model. To verify and validate the model axisymmetric compression tests combined with relaxation were modeled and the results were compared with experimental data. The precipitation sub-model was verified by the use of literature data. In addition, rolling in the hot strip mill was modeled using process data from the hot strip mill at SSAB Strip Products Division. The materials investigated were plain C-Mn steels and Nb microalloyed steels. The results from the model show good agreement with measured data. / QC 20100706
2

Modeling the microstructural evolution during hot working of C-Mn and Nb microalloyed steels using a physically based model

Lissel, Linda January 2006 (has links)
<p>Recrystallization kinetics, during and after hot deformation, has been investigated for decades. From these investigations several equations have been derived for describing it. The equations are often empirical or semi-empirical, i.e. they are derived for certain steel grades and are consequently only applicable to steel grades similar to these. To be able to describe the recrystallization kinetics for a variety of steel grades, more physically based models are necessary.</p><p>During rolling in hot strip mills, recrystallization enables the material to be deformed more easily and knowledge of the recrystallization kinetics is important in order to predict the required roll forces. SSAB Tunnplåt in Borlänge is a producer of low-carbon steel strips. In SSAB’s hot strip mill, rolling is conducted in a reversing roughing mill followed by a continuous finishing mill. In the reversing roughing mill the temperature is high and the inter-pass times are long. This allows for full recrystallization to occur during the inter-pass times. Due to the high temperature, the rather low strain rates and the large strains there is also a possibility for dynamic recrystallization to occur during deformation, which in turn leads to metadynamic recrystallization after deformation. In the finishing mill the temperature is lower and the inter-pass times are shorter. The lower temperature means slower recrystallization kinetics and the shorter inter-pass times could mean that there is not enough time for full recrystallization to occur. Hence, partial or no recrystallization occurs in the finishing mill, but the accumulated strain from pass to pass could lead to dynamic recrystallization and subsequently to metadynamic recrystallization.</p><p>In this work a newly developed physically based model has been used to describe the microstructural evolution of austenite. The model is based on dislocation theory where the generated dislocations during deformation provide the driving force for recrystallization. The model is built up by several submodels where the recrystallization model is one of them. The recrystallization model is based on the unified theory of continuous and discontinuous recovery, recrystallization and grain growth by Humphreys.</p><p>To verify and validate the model, rolling in the hot strip mill was modeled using process data from SSAB’s hot strip mill. In addition axisymmetric compression tests combined with relaxation was modeled using experimental results from tests conducted on a Gleeble 1500 thermomechanical simulator at Oulu University, Finland. The results show good agreement with measured data.</p>
3

Modeling the microstructural evolution during hot working of C-Mn and Nb microalloyed steels using a physically based model

Lissel, Linda January 2006 (has links)
Recrystallization kinetics, during and after hot deformation, has been investigated for decades. From these investigations several equations have been derived for describing it. The equations are often empirical or semi-empirical, i.e. they are derived for certain steel grades and are consequently only applicable to steel grades similar to these. To be able to describe the recrystallization kinetics for a variety of steel grades, more physically based models are necessary. During rolling in hot strip mills, recrystallization enables the material to be deformed more easily and knowledge of the recrystallization kinetics is important in order to predict the required roll forces. SSAB Tunnplåt in Borlänge is a producer of low-carbon steel strips. In SSAB’s hot strip mill, rolling is conducted in a reversing roughing mill followed by a continuous finishing mill. In the reversing roughing mill the temperature is high and the inter-pass times are long. This allows for full recrystallization to occur during the inter-pass times. Due to the high temperature, the rather low strain rates and the large strains there is also a possibility for dynamic recrystallization to occur during deformation, which in turn leads to metadynamic recrystallization after deformation. In the finishing mill the temperature is lower and the inter-pass times are shorter. The lower temperature means slower recrystallization kinetics and the shorter inter-pass times could mean that there is not enough time for full recrystallization to occur. Hence, partial or no recrystallization occurs in the finishing mill, but the accumulated strain from pass to pass could lead to dynamic recrystallization and subsequently to metadynamic recrystallization. In this work a newly developed physically based model has been used to describe the microstructural evolution of austenite. The model is based on dislocation theory where the generated dislocations during deformation provide the driving force for recrystallization. The model is built up by several submodels where the recrystallization model is one of them. The recrystallization model is based on the unified theory of continuous and discontinuous recovery, recrystallization and grain growth by Humphreys. To verify and validate the model, rolling in the hot strip mill was modeled using process data from SSAB’s hot strip mill. In addition axisymmetric compression tests combined with relaxation was modeled using experimental results from tests conducted on a Gleeble 1500 thermomechanical simulator at Oulu University, Finland. The results show good agreement with measured data. / QC 20101118
4

Etudes theoriques et experimentales de la neuroglobine humaine / Theoretical and Experimental Studies of the human Neuroglobin

Bocahut, Anthony 07 October 2011 (has links)
Le but de cette thèse est de mettre en relation les propriétés structurale, dynamique et fonctionnelle de la forme humaine d’une nouvelle protéine découverte dans le cerveau des vertébrés en 2000 : la Neuroglobine. Dans un premier temps, j’ai réalisé une étude théorique dans laquelle un mécanisme à deux voies menant à la forme pentacoordinée avec cystéines oxydées a été mis en avant. A travers ce mécanisme, un conformère de la Neuroglobine au sein duquel le groupe prosthétique hème a basculé au cœur de la structure protéique a été déterminé. A partir des structures de ce mécanisme, une étude sur la diffusion de petits ligands au sein des cavités internes de la protéine à l’aide de la méthode de métadynamique a mis en évidence que la formation du pont disufure intramoléculaire favorisait la poche de ligation. De plus un certain nombre de voies de sortie pour les ligands a pu être obtenu. Pour compléter ce premier aspect de la thèse, une étude des propriétés mécaniques, communes avec les autres globines, a montré l’importance de quatre résidus centraux, dit mécaniquement sensibles, qui régulent les canaux d’accès aux différentes poches internes de la protéine, appelé phénomène de respiration. Dans un second temps, je me suis intéressé à l’interaction de la Neuroglobine avec un petit ligand via une étude expérimentale par ITC. La première conclusion importante est que la cinétique de ligation est plus importante lorsque le pont disulfure est formé. De plus j’ai observé une diminution de la cinétique lors du passage Wild Type vers C120S puis réaugmentation de la cinétique lors du passage C120S vers C46G/C55S/C120. Afin de comprendre ce phénomène, une simulation de la Neuroglobine triplement mutée a été réalisée au cours de laquelle un réseau de deux liaisons hydrogènes a été mis en avant. Ce réseau change considérablement les voies d’entrée/sortie pour les ligands. Ainsi la mutation 120 ferme une/ou plusieurs voies de sortie alors que la mutation 46 ouvre la voie naturelle des globines. Le changement observé étant important, une étude par RMN de Ngb TM et WT cystéines réduites a montré qu’il y avait une différence de structure entre ces formes pas seulement au niveau des points de mutation mais sur l’ensemble de la structure. Ces nouveaux résultats mettent ainsi en évidence le rôle important des trois cystéines chez la Neuroglobine humaine. / In this PhD work, I tried to link together the different structural, dynamic and fonctional properties of a new human protein discovered in the mamals brain in 2000: the Neuroglobin. First of all, I established a new two ways mecanism in order to get the pentacoodinated oxydized cysteins state using theoritical method. One of this mecanism’s conformer shows an important heme sliding inside of the proteic structure. Furthermore with help of metadynamic method, I studied the small ligand diffusion and migration in the internal cavity network. I showed the higher ligand affinity when the disulfide bridge is bond and we proposed an important number of exit pathways. Then we developed a method to understand the mechanical properties of the globins and we found four residues mechanically sensitive which form together a control access pathway between internal cavities, called breath phenomenon. Secondly I used ITC method in order to characterize the interaction between the Neuroglobin and a small ligand. From this experiment we highlighted that the kinetic ligation is faster when the disulfide bridge is formed. Then I noticed a relative decrease of the velocity when the mutation C120S is operated followed by a relative increase of the velocity for the triple mutation C46G/C55S/C120 compared to the Wild Type data. To understand these results, I performed a molecular simulation of the triple mutation Neuroglobin form. During this trajectory, I discovered a structure with a two hydrogen bonds network, which significantly changes the ligand entry/exit pathways. The 120 mutation closes one/several exit pathways while the 46 mutation opens the natural globin exit pathway. Because of the considerable structural change observed in the triple mutation Neuroglobin form, I decided to produce NMR results. These last points reveal a relative structure difference between the Wild Type oxidized cysteins form and the triple mutation form not only on the mutation points but also on the global structure. All these new results highlight the essential role of the three cysteins in the human Neuroglobin.

Page generated in 0.0618 seconds