• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Discovery and Functional Characterization of Novel Soil-metagenome Derived Phosphatases

Castillo Villamizar, Genis Andrés 28 March 2019 (has links)
No description available.
2

Relating prokaryotic and microeukaryotic diversity to community function and ecosystem variability at deep-sea hydrothermal vents

Murdock, Sheryl 01 September 2021 (has links)
Despite over four decades of research on deep-sea hydrothermal vent ecosystems, major gaps remain in our understanding of these systems. Knowledge of microeukaryote diversity, abundance, and involvement in ecosystem function lags far behind that of prokaryotes, and contributions of the non-endosymbiotic microbiome in faunal assemblages to ecosystem processes and overall hydrothermal vent microbial diversity are not known. This research addresses these gaps using high-throughput sequencing of 16S/18S rRNA genes and metagenomes from vent and surrounding non-vent habitats encompassing diffuse hydrothermal fluids, plumes, deep seawater, and microbes in assemblages of the foundation tubeworm species Ridgeia piscesae. Co-occurrence/covariance is a central method used, first, between prokaryotes with known extreme habitat preferences and microeukaryotes to infer potential endemism in the latter, and then between microbes and fauna in R. piscesae assemblages to infer interspecies interactions. Microeukaryote distribution and abundance suggest potential vent endemic microeukarya are infrequently encountered, potentially in low abundance, and belong to novel lineages of Rhizaria and Stramenopila. Potential endemism is inferred for relatives of known apusomonads, excavates, and some clades of Syndiniales. R. piscesae assemblages are shown to be hotspots of microbial taxonomic richness and exhibit a robust temperature-driven distinction in assemblage composition above and below ~25°C spanning micro, meio and macro size classes and microbial domains (Bacteria, Archaea, and micro-Eukarya). Likely interacting faunal and microbial taxa among R. piscesae assemblages are identified as ‘core communities’, which included eight macro- and meiofaunal taxa and members of the Bacteroidetes and Epsilonbacteraeota in highT communities (>25°C) and more meiofaunal species in addition to Alpha- and Gammaproteobacteria, and Actinobacteria in lowT communities (<25°C). Core communities were used to guide metagenomic investigations of microbial functional potential. Exploratory metagenomic analysis required development of new methods to deal with compositional data. ‘Enrichment leanings’ were developed to prioritize in-depth functional comparisons between sample types, which revealed clades within core community microbes with differing functional potential between highT and lowT assemblages and between assemblages and fluids. The balance of autotrophy-heterotrophy genes and patterns of genes for different carbon, nitrogen, and sulfur-cycling processes were tested as potential metrics of community-level function but did not distinguish assemblages by highT/lowT designations. This research brings us closer to understanding hydrothermal vent ecosystem function and suggests sizeable continued discovery potential. / Graduate / 2022-06-08
3

The Discovery of a Novel Bacteria from a Large Co-assembly of Metagenomes

Finkelberg, Matthew 14 November 2023 (has links) (PDF)
In the summer of 2022, a co-assembly of metagenome was created using the microbes found at Barres Woods in Harvard Forest. 14 samples were taken, and sample was split into the organic and mineral layer, which totals 28 Bulk MAGs. Within this Co-assembly, 4 different genomes were found which were designated with the phylum of FCPU426. Three of which were considered medium quality and one being assigned high quality. The novel phyla first appeared in NCBI and GTDB databases in June 2018. The name FCPU426 dates to 2010 and was named based on the 16s amplicon sequencing. The novel phylum is shown to have common ancestors with the phyla of Goldbacteria and Firestonebacteria. Goldbacteria was determined to have the ability to break down cellulose to further enhance carbon cycling. In this analysis of FCPU426, the taxonomy of the phyla will be further investigated. FCPU426 was then annotated to determine if any of the cellulase genes are shared between itself and Goldbacteria. Further annotations were done to spot any genes of interest that create any distinctions between any of its counterparts.
4

Markov Model of Segmentation and Clustering: Applications in Deciphering Genomes and Metagenomes

Pandey, Ravi Shanker 08 1900 (has links)
Rapidly accumulating genomic data as a result of high-throughput sequencing has necessitated development of efficient computational methods to decode the biological information underlying these data. DNA composition varies across structurally or functionally different regions of a genome as well as those of distinct evolutionary origins. We adapted an integrative framework that combines a top-down, recursive segmentation algorithm with a bottom-up, agglomerative clustering algorithm to decipher compositionally distinct regions in genomes. The recursive segmentation procedure entails fragmenting a genome into compositionally distinct segments within a statistical hypothesis testing framework. This is followed by an agglomerative clustering procedure to group compositionally similar segments within the same framework. One of our main objectives was to decipher distinctive evolutionary patterns in sex chromosomes via unraveling the underlying compositional heterogeneity. Application of this approach to the human X-chromosome provided novel insights into the stratification of the X chromosome as a consequence of punctuated recombination suppressions between the X and Y from the distal long arm to the distal short arm. Novel "evolutionary strata" were identified particularly in the X conserved region (XCR) that is not amenable to the X-Y comparative analysis due to massive loss of the Y gametologs following recombination cessation. Our compositional based approach could circumvent the limitations of the current methods that depend on X-Y (or Z-W for ZW sex determination system) comparisons by deciphering the stratification even if only the sequence of sex chromosome in the homogametic sex (i.e. X or Z chromosome) is available. These studies were extended to the plant sex chromosomes which are known to have a number of evolutionary strata that formed at the initial stage of their evolution, presenting an opportunity to examine the onset of stratum formation on the sex chromosomes. Further applications included detection of horizontally acquired DNAs in extremophilic eukaryote, Galdieria sulphuraria, which encode variety of potentially adaptive functions, and in the taxonomic profiling of metagenomic sequences. Finally, we discussed how the Markovian segmentation and clustering method can be made more sensitive and robust for further applications in biological and biomedical sciences in future.
5

The metagenomes of root nodules in actinorhizal plants : A bioinformatic study of endophytic bacterial communities

Fasth, Ellen January 2021 (has links)
Actinorhizal plants are in symbiosis with the nitrogen-fixating soil bacterium Frankia, which forms nodules in the plant root. However, several studies also report other endophytic bacteria appearing in the nodules, but their function and interaction with the host plant or Frankia is not yet understood. This thesis used a bioinformatic approach to investigate the metagenomes of eighteen actinorhizal nodule samples to find out which bacteria are present, how the microbiomes differed from each other, and if the genomes of non-Frankia inhabitants could give indications of any functions. The results showed that the bacterial composition, richness, and diversity differed among the samples, especially between the samples sequenced from the field versus those primarily cultivated in a greenhouse. All samples had a substantial number of sequencing reads belonging to potential endophytes, such as strains of Enterobacteria, Pseudomonas, Streptomyces, Micromonospora, Mycobacteria and Pseudonocardia. There seemed to be a common microbial community shared among the plants on a family level, since no significant difference was found in the core microbiomes between the field and greenhouse groups. Some sequences found in the metagenomes were annotated as potential functions of the fellow travellers, such as antibiotic synthesis, proteins involved in regulating abiotic stresses, but also probable plant damaging compounds rather associated with pathogens than symbionts.
6

Optimizing Parameters for High-quality Metagenomic Assembly

Kumar, Ashwani 29 July 2015 (has links)
No description available.
7

Potentiels physiologiques et métaboliques de communautés microbiennes de sédiments de subsurface : approches culturale, génomique et métagénomique / Physiological and metabolic potentials of subsurface sediments microbial communities : cultural, genomic and metagenomic approaches

Gaboyer, Frédéric 18 September 2014 (has links)
Les communautés microbiennes de sédiments de subsurface ont été décrites jusqu’à 1922 mbsf (meters below the seafloor) et pourraient représenter 0,6% de la biomasse totale. Largement incultivées, ces communautés comprennent des groupes endémiques aux environnements de subsurface et des généralistes retrouvés dans des environnements contrastés, appartenant aux 3 domaines du vivant (Bacteria, Eukarya and Archaea). Bien que jouant un rôle majeur dans les grands cycles géochimiques, l’écologie microbienne des sédiments de subsurface reste peu connue. Les conditions hostiles de ces sédiments contrastent avec la présence d’activité et de viabilité microbiennes. Dans ce contexte, de nombreuses questions sur les modes de vie et les métabolismes des microorganismes enfouis demeurent. L’objectif de cette thèse était de mieux comprendre quelles stratégies adaptatives pouvaient être mises en place par les communautés microbiennes de subsurface et de caractériser leur potentiel physiologique. Pour cela, 3 approches ont été utilisées.(1) Une approche culturale a permis de décrire 2 nouvelles espèces bactériennes sédimentaires (Halomonas lionensis, ungénéraliste versatile, et Phaeobacter leonis, une bactérie marine typique). L’étude de la résistance aux conditions de subsurface de ces deux espèces et de la bactérie Sunxiuqinia faeciviva, isolée à 247 mbsf, a ensuite été étudiée. (2) Par une étude de génomique comparée et structurale, la plasticité physiologique de H. lionensis a été analysée. (3) Enfin, le potentiel fonctionnel de communautés microbiennes enfouies à 31 et 136 mbsf dans le bassin de Canterbury a été étudié, en analysant les 2métagénomes correspondants. Les résultats culturaux et génomiques montrent que H. lionensis et S. faeciviva résistent mieux aux stress de subsurface que P. leonis et, dans le cas de H. lionensis, ceci impliquerait des propriétés physiologiques variées pouvant expliquer le succès écologique du genre Halomonas. Les données de métagénomique indiquent que les diversités phylogénétique et fonctionnelle de subsurface du bassin de Canterbury sont distinctes de celles d’environnements de surface et suggèrent que des métabolismes comme la fermentation, la méthanogenèse ou la β-oxydation pourraient être importants. La présence de gènes d’importance écologique et évolutive a permis d’émettre des hypothèses sur les modes de vie de ces microorganismes et des évènements de recombinaison génomique de groupes toujours incultivés ont aussi pu être décrits / Microbial communities inhabiting marine subsurface sediments were described up to 1922 mbsf (meters below the sea floor) andcould represent 0.6% of the total biomass. This microbial diversity, remaining elusive to cultivation, comprises groups specific to subsurface environments and groups of generalists found in contrasted habitats, all belonging to the 3 domains of life (Bacteria,Eukarya and Archaea). Although playing a major role in global geochemical cycles, the microbial ecology of the subseafloor remains largely unknown. The hostile conditions of subsurface sediments contrast with the descriptions of microbial activity andviability in the subseafloor. In this context, many questions related to the microbial physiology and the lifestyles of buried communities remain to be answered. The objective of this thesis was to better understand which adaptive strategies could be deployed by subseafloor microbial communities and to characterize their physiological potential. In that aim, 3 approaches were used.(1) A cultural approach enabled describing 2 novel sedimentary bacterial species (Halomonas lionensis, a versatile generalist and Phaeobacter leonis a typical marine bacterium). The survival of these 2 species to subseafloor conditions and of the subsurface bacteria Sunxiuqinia faeciviva, isolated at 247 mbsf, was then studied. (2) Using a structural and comparative genomic approach, the physiological plasticity of H. lionensis was investigated. (3) Finally, the functional potential of the microbial communities buried at 31 and 136 mbsf in the Canterbury Basin was analyzed, by studying the 2 corresponding metagenomes. Cultural and genomics results showed that H. lionensis and S. faeciviva are more resistant to subsurface constrains than P. leonis and, in the case of H. lionensis, this may involve various physiological properties, maybe explaining thee cological success of the genus Halomonas. Metagenomic data showed that the functional and the phylogenetic diversity of the subseafloor are distinct from the ones from surface environments and highlighted the importance of metabolic pathways like fermentation, methanogenesis and β-oxidation. Genes of ecological and evolutionary interests enabled speculating about lifestyles of buried microorganisms and analyses of genomic fragments highlighted recombination events of still uncultivated microbial groups

Page generated in 0.0718 seconds