• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and Characterization of Novel Ternary and Quaternary Alkali Metal Thiophosphates

Alahmary, Fatimah S. 05 1900 (has links)
The ongoing development of nonlinear optical (NLO) crystals such as coherent mid-IR sources focuses on various classes of materials such as ternary and quaternary metal chalcophosphates. In case of thiophosphates, the connection between PS4-tetrahedral building blocks and metals gives rise to a broad structural variety where approximately one third of all known ternary (A/P/S) and quaternary (A/M/P/S) (A = alkali metal, M = metal) structures are acentric and potential nonlinear optical materials. The molten alkali metal polychalcophosphate fluxes are a well-established method for the synthesis of new ternary and quaternary thiophosphate and selenophosphate compounds. It has been a wide field of study and investigation through the last two decades. Here, the flux method is used for the synthesis of new quaternary phases containing Rb, Ag, P and S. Four new alkali metal thiophosphates, Rb4P2S10, RbAg5(PS4), Rb2AgPS4 and Rb3Ag9(PS4)4, have been synthesized successfully from high purity elements and binary starting materials. The new compounds were characterized by single crystal and powder X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible (UV-VIS), Raman spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). These compounds show interesting structural variety and physical properties. The crystal structures feature 3D anionic framework built up of PS4 tetrahedral units and charge balanced by Ag and alkali metal cations. All prepared compounds are semiconductors with band gap between 2.3 eV to 2.6 eV and most of them are thermally stable up to 600ºC.
2

Resonance Energy Transfer Using ZnO Nanocrystals And Magnetism In The Mixed Metal Layered Thiophosphates, Mn1-xFexPS3(0≤x≥1)

Rakshit, Sabyasachi 04 1900 (has links) (PDF)
This thesis consists of two parts. The first part deals with the visible emission of ZnO Nanocrystals and its possible application in Resonance Energy Transfer (RET) studies. The second part of the thesis is on the magnetic properties of the layered transition metal Thiophosphates MPS3 (M = Mn, Fe), their solid solutions and intercalation compounds. Recent advances in semiconductor nanocrystals or quantum dots (QDs) as inorganic fluorophores have pioneered a new direction in the fluorescent based techniques to investigate fundamental processes in lifesciences. Their broad absorption spectra with narrow, Size-tunable emissions with high quantum e±ciency and stability under relative harsh environments have made inorganic QD's the fluorophores of choice in many applications. Among inorganic fluorophores the II-VI semiconductors based on cadmium chalcogenides are the front-runners. The cytotoxicity associated with these QDs is, however, a major drawback and has lead to the search for new nanocrystalline fluorophores that are non-toxic and possess the same favorable fluorescence properties as the Cd based QDs, viz, tunability and narrow spectral profile. ZnO Nano particles are known to exhibit two emission bands; a narrow emission band in UV around 380 nm (3.25 eV) at a wavelength just below the onset of the band gap excitation in the absorption spectra and a broad emission band in the blue-green part of the visible spectrum, with a maximum between 500 and 550 nm (2.5-2.2 eV). The UV Emission originates from the recombination of bound excitons - excited electrons in the Conduction band with holes in the valence band. The visible emission of ZnO nanocrystals is known to involve deep trap states that lie approximately midway between the Conduction and valence bands and surface defects that exist as shallow traps. In principle, visible-light-emitting ZnO nanocrystals would be ideal candidates as replacement for Cd-based fluorescent labels since they are nontoxic, less expensive, and chemically stable in air. Nanoscale ZnO, however, tends to aggregate and/or undergo Ostwald ripening be-Cause of high surface free energy resulting in an increase in crystallite size and consequent Disappearance of the visible emission. Most attempts to stabilize the ZnO nanocrystals by Capping has usually resulted in the quenching of the visible trap emission. The objective of the present study was to stabilize the visible light emission of ZnO nanocrystals, to Understand the origin and mechanism of the visible emission and to explore the possibility Of using the visible emission of ZnO in RET studies. The stabilization of visible light emission in ZnO nanocrystals was achieved by forming ZnO:MgO core-shell nanocrystals. The nanocrystals were synthesized by a sequential preparative procedure that involved formation of a ZnO core followed by an MgO shell. The Nanocrystals were characterized by using XRD, TEM, optical absorption and photoluminescence spectroscopy. These are described in Chapter 2 of the thesis. The ZnO: MgO Core-shell nanostructures exhibit stable emission in the visible for extended periods. Application of the ZnO: MgO nanocrystals either as fluorescent probes or RET studies require that they be dispersible in both polar and non-polar solvents. This as realized by appropriate choice of the capping agents (Chapter 3). ZnO: MgO nanocrystals with hydrophobic surface were obtained by capping the nanocrystals with oleic acid. The oleate capped ZnO: MgO nanocrystals are soluble in a variety of non-polar organic solvents with no change in their emission properties. Water-soluble ZnO: MgO nanocrystals were obtained by capping the ZnO:MgO nanocrystals with carboxymethyl-β-cyclodextrin (CMCD). The hydroxyl groups located at the rim of the cyclodextrin cavity renders the surface hydrophilic. The integrity of the CMCD molecules are preserved on capping and their by hydrophobic cavities available for host-guest chemistry. The visible emission of The ZnO: MgO nanocrystals are unaltered by the nature of the capping agent. The origin and mechanism of the visible emission from ZnO: MgO nanocrystals has been Investigated using time-resolved emission spectroscopy technique (Chapter 4). The time-evolution of the photoluminescence spectra show that there are, in fact, two features in the visible emission whose relative importance and efficiencies vary with time. These features originate from recombination involving trapped electrons and holes, respectively, And with efficiencies that depend on the occupancy of the trap density of states. The application of the visible emission of ZnO: MgO nanocrystals as resonance energy transfer (RET) donors in water and hydrophobic media are demonstrated. In aqueous media, the carboxymethyl β-cyclodextrin (CMCD) capped ZnO: MgO nanocrystals is able to accommodate the organic dye Nile Red by an inclusion in the anchored hydrophobic cyclodextrin cavity forming a 1:1 complex. Nile Red was chosen as the guest molecule because its absorption has appreciable overlap with ZnO: MgO visible emission, a prerequisite for RET to occur. The resonance energy transfer on the band gap excitation of The ZnO core to included Red molecules in the CMCD-ZnO: MgO-Nile Red supramolecular assembly is demonstrated in aqueous media. A similar RET process is shown to occur in the non-polar media in the oleate capped ZnO: MgO nanocrystals when Nile Red is partitioned from the solvent into hydrophobic anchored oleate chains. The wavelength dependent energy transfer in the system has been studied using time-resolved emission spectroscopic technique. The importance of trap states in giving rise to non-Forster distance dependence for the RET is highlighted. The second part of the thesis deals with magnetism in low dimensional layered transition metal thiophophates, MPS3 (M = Mn, Fe). Low dimensional magnetic systems continue to be a fertile ground for discovering new phenomena and properties. Among two-dimensional magnetic systems the insulating transition metal thiophosphates are one of the few known layered systems, in which both magnetic and crystallographic lattices are two dimensional (2D). In the metal chalcogenophosphates, the magnetic MPX3 layers are separated by a van der Waals gap that effectively rules out interlayer exchange and hence these systems are nearly perfect 2D magnetic systems, with the magnetic ions forming a honeycomb arrangement within the layer. Due to the crystallographic two-dimensional nature these materials may be intercalated by variety of molecules or ions leading to change in magnetic properties. The objective of this thesis work is to try and modify the magnetic properties of the transition metal thiophosphates either by forming solid solutions of the type, M1-xMxPS3, (M, M = Mn, Fe) or by intercalating hydrated metal ions within the layers. The structure, Bonding, reactivity and magnetic properties are briefly introduced in Chapter 7. The Scope and nature of the present work in presented towards the end of the chapter. MnPS3 and FePS3 have identical crystal structures and both order antiferromagnetically at low temperatures, TN. The in-plane magnetic structures of the antiferromagnetically ordered the Neel state in the two compounds are, however, different. In MnPS3 the spins Alternate up-down whereas in FePS3 the spins are arranged as ferromagnetic chains with Alternate chains coupled antiferromagnetically. Since the crystal structures are identical, These two compounds can form solid solutions, Mn1-xFexPS3(0≤x≥1) over the entire concentration range. The magnetic properties of the single crystals of the solid solutions was measured by using a SQUID magnetometer. This system is of interest since the contrasting Neel states of the end-members may give rise to new magnetic phenomena at intermediate composition. It is shown that the magnetic behavior falls into three distinct categories. The Mn-rich compositions behave like a dilute MnPS3 lattice, the Fe-rich compositions behave like dilute FePS3 and in the intermediate compositions a spin-glass like phase appears. The phase boundaries for these regime in Mn1-xFexPS3, 0≤x≥1 is shown to be related to the percolation threshold for a honeycomb lattice. MnPS3 is known to undergo a unusual ion-exchange intercalation reaction. Intercalation occurs by the inclusion of hydrated metal ions in the galleries of MnPS3 with charge neutrality maintained by loss of the Mn2+ ions from the layer (Equation). MnPS3 + 2xG+ (aq) → Mn1-xPS3 [G (H2O) y] 2x + xMn2+ (aq) Where G is a neutral guest species. This chemistry has been exploited to intercalate hydrated Mn2+ ions in the interlamellar space to give Mn1-xPS3[Mn(H2O)6]x. the magnetic properties of this 3D analogue of MnPS3 has been investigated in Chapter 9.
3

Electrocatalytic Studies Using Layered Transition Metal Thiphosphates, Metal Chalcogenides and Polymers

Mukherjee, Debdyuti January 2017 (has links) (PDF)
The ever increasing demand for energy due to over consumption of non-renewable fossil fuels has emphasized the need for alternate, sustainable and efficient energy conversion and storage systems. In this direction, electrochemical energy conversion and storage systems involving various fundamental electrochemical redox processes such as hydrogen evolution (HER), oxygen reduction (ORR), oxygen evolution (OER), hydrogen oxidation (HOR) reactions and others become highly important. Electrocatalysts are often used to accelerate the kinetics of these reactions. Platinum (Pt), ruthenium oxide and iridium oxide (RuO2 and IrO2) are known to be the state of the art catalysts for several of these reactions due to favouarable density of states (DOS) near the Fermi level, binding energy with the reactant species, chemical inertness etc. Apart from HER, OER and ORR, chlorine evolution reaction (Cl-ER) is another industrially important reaction associated with water purification, disinfection, bleaching, chemical weapons and pharmaceuticals. Dimensionally stable anodes (RuO2/IrO2 mixed with TiO2 on Ti) are the most commonly used catalysts for this process. Issues related to surface poisoning, corrosion and cost of the catalysts, in addition to selectivity and specificity towards a particular reaction are various aspects to be addressed. For example, Pt is not very specific for ORR in presence of methanol in addition to high cost and corrosion in certain media. On the other hand, DSA can efficiently catalyze both OER and Cl-ER, and hence there is overlap of the two processes in the potential range available. There is an on going search for efficient, cost-effective, stable catalysts that possess high specificity for a particular redox reaction. Towards this goal, the present study explores certain layered (phospho)chalcogenides for catalyzing HER, ORR, OER and Cl-ER. The present thesis is structured in two parts, where the first part explores the multi-functional catalytic aspects of new classes of compounds based on layered transition metal mixed chalcogenides (MoS2(1-x)Se2x) and ternary phosphochalcogenides (FePS3, FePSe3 and MoPS). In addition, lithium insertion and desinsertion has been studied with the aim of using the layered materials for rechargeable batteries. The second part of the thesis explores organic electrode materials with active carbonyl groups such as rufigallol, polydihydroxyanthrachene succinic anhydride (PDASA) as battery electrodes. Additionally, covalently functionalized transition metal phthalocyanines with reduced graphene oxide are studied as counter electrodes in dye sensitized solar cells (DSSCs). MoS2(1-x)Se2x (x = 0 to 1) compositions are solid solutions of MoS2 and MoSe2 in different ratios. They crystallize in hexagonal structure with space group P63/mmc (D6h4) having Mo in trigonal prismatic coordination like the pristine counterparts. X-Ray diffraction studies reveal that Vegard’s law (figure 1a) is followed and hence complete miscibility of MoS2 and MoSe2 is established. MoS2(1-x)Se2x (x = 0 to 1) are layered in nature and the layers are held together by long range, weak van der Waal’s forces. This gives us the flexibility of exfoliation to produce corresponding few-layer materials (figure 1b). Figure 1. (a) Variation of lattice parameter corresponding to (002) reflection of MoS2(1-x)Se2x with different x values. (b) Scanning electron micrograph of few-layer MoS2(1-x)Se2x (x = 0.5). The electrocatalytic activity of the few-layer sulphoselenides have been studied towards HER in aqueous 0.5 M H2SO4 and towards Cl-ER in 3 M aqueous NaCl (pH = 3) solution. The mixed chalcogenides exhibit very good activities for both HER and Cl-ER as compared to the activity of their pristine counter parts (i.e. MoS2 and MoSe2) (figures 2a and 2b). Electrocatalytic activity on different compositions reveal that MoS1.0Se1.0 exhibits the maximum activity. Additionally, it has been observed that MoS1.0Se1.0 shows high specificity for Cl-ER with negligible interference of OER. Figure 2. Voltammetric data for (a) hydrogen evolution reaction (in 0.5 M aqueous H2SO4) and (b) chlorine evolution reaction (in 3 M aqueous NaCl solution, pH = 3) on MoS2(1-x)Se2x (x = 0, 0.5, 1). Figure 3. (a) XRD pattern of MoS2(1-x)Se2x (x = 0.5) electrode after a cycle of Li insersion and deinsersion (red) along with as-synthesized material (black) (b) Cycling behaviour of rGO supported (black) and pristine (red) MoS2(1-x)Se2x (x = 0.5) as electrode in rechargeable lithium-ion battery. The equiatomic MoS1.0Se1.0 has also been studied as an anode material for rechargeable lithium batteries. The cyclic voltammogram and characterization after charge-discharge cycle (figure 3a) indicate intercalation of Li with in the layers followed by conversion type formation of Li-S and Li-Se type compounds. The pristine material shows continuous capacity fading while the composites of sulphoselenides functionalized with conducting carbon supports such as rGO, MWCNT, super P carbon, toray carbon show marked improvement in capacity as well as cycling behavior. The rGO functionalized MoS1.0Se1.0 reveals ~1000 mAh/g of stable specific discharge capacity for 500 cycles (figure 3b). In the next two chapters, new class of transition metal-based layered materials FePS3 and FePSe3, containing both P and chalcogen (S and Se) is indroduced for electrocatalysis. FePS3 crystallizes in monoclinic symmetry with an indirect band gap of ~1.55 eV while FePSe3 possesses rhombohedral crystal structure with comparatively low band gap (~1.3 eV) as shown in figure 4a. The FePS3 and FePSe3 have been exfoliated as has been done for MoS1.0Se1.0 (liquid exfoliation method) using acetone as the solvent. Stable colloids with few-layer nanosheets having lamellar morphology and lateral sizes of ~100 to 200 nm are obtained. Electrical characterization indicates that they are semiconducting and the conductivity of the Se analogue is ~50 times higher than that of the S analogue (figure 4b). Figure 4. (a) Catholuminescence of FePX3 ( X = S and Se) reveals the band gap of the material. Band gap of the S analogue is 1.52 eV and that of the Se analogue is 1.33 eV (b) Resistivity of FePX3 ( X = S and Se) as a function of temperature. The tri-functional electrocatalytic activities on rGO-few layer FePX3 (X = S and Se) have been evaluated for HER over a wide pH range (0.5 M H2SO4, 0.5 M KOH, phosphate Figure 5. Catalytic activity of rGO-few-layer FePX3 (X = S, Se) towards HER in (a) aqueous 0.5 M H2SO4 and (b) 3.5 wt % NaCl solutions. (c) ORR activity of the catalysts in oxygen saturated 0.5 M KOH (d) OER behaviour on the catalysts in 0.5 M KOH at a rotation speed of 1600 rpm. buffer, pH 7 and 3.5 % NaCl), ORR and OER in alkaline media (0.5 M KOH). The studies clearly reveal that both rGO-FePS3 and rGO-FePSe3 exhibit excellent HER activity in acidic media (figure 5a) with high stability. The HER studies in 3.5 wt % aqueous NaCl solution (figure 5b) suggests that the catalysts are effective in evolving hydrogen from sea-water environment. Studies on ORR activity (figure 5c) indicate that the rGO composites of both S and Se analogues follow 4-electron pathways to produce water as the final product. They are also found to be highly methanol tolerant. In the case of OER (figure 5d), XPS characterization of the electrodes after the voltammetric studies reveals the presence of very thin layer of Fe2O3 (not detectable by XRD). All the three reactions (HER, ORR and OER) catalyzed by the Se analogue are better than the S analogue (figure 5). This could be due to the low band gap and high conductivity of FePSe3 as compared to FePS3. The over potential to achieve 10 mAcm-2 current density is ~108 mV for rGO-few-layer FePS3 catalyst where in the case of rGO-few layer FePSe3, it is ~97 mV (table 1). Table 1. Catalytic activities of rGO-few layer FePS3 and rGO-few layer FePSe3 towards HER, ORR and OER. Reaction studied rGO-FePS3 rGO-FePSe3 HER (η @ 10mAcm-2) ~108 mV ~97 mV ORR (peak potential) ~0.81 V ~0.87 V OER (η @ 10mAcm-2) ~470 mV ~430 mV It is likely that there is a strong interaction between FePX3 (metal d-orbital) and rGO, as observed from the downward shift of Fe 2p peak in high resolution XPS studies. This interaction may extend the density of states of metal d-orbitals thereby improving the catalytic activities. The next chapter deals with molybdenum-based phosphosulphide compound (MoPS). Molybdenum-based phosphide catalysts have been explored recently as excellent catalysts for various electrochemical reactions such as HER. It is expected that the catalyst containing both S and P will show positive effects on catalytic activities due to the synergy between S and P. In the present study, P incorporated MoS2 is studied towards HER. The XRD pattern of the as-synthesized crystal suggests the presence of mixed phase of MoS2, MoP2 and MoP while the elemental mapping in microscopy indicates the ratio of Mo, P and S to be 1:1:1. The electrochemical HER in 0.5 M H2SO4 indicates that the activity is improved drastically as compared to bulk and few-layer MoS2. The next section explores the use of different organic electrode materials possessing active carbonyl groups for Li-storage studies. The advantage of the use of carbonyl-based compounds lies in the high reversible activity towards Li ion insersion and de-insersion. Rufigallol (figure 6a) exhibits very stable capacity of ~200 mAh/g (at C/20 rate) upto 500 Figure 6. (a) and (c) Schematic representation of rufigallol and poly-dihydroanthracene succinic anhydride (PDASA) respectively. (b) and (d) Cyclic behaviour of rufigallol (at C/20 rate) and PDASA (at 20 mAg-1 current rate) in Li-storage devices. (e) and (f) represent the coulombic efficiency of rufigallol (at C/20 rate) and PDASA (at 20 mAg-1 current rate) as a function of number of cycles. cycles along (figure 6b) and with very good rate capability. A triptycene-based mesoporous polymer, PDASA (figure 6c) is introduced and explored as efficient electrode material for Li-storage. PDASA exhibits very high capacity of ~1000 mAh/g at a current rate of 50 mA/g upto 1000 cycles (figure 6d). Even at very high current rates (3A/g) excellent cyclability is observed. The mechanistic details of lithium uptake and release are studied using various spectroscopic techniques. In both the cases the coulombic efficiency observed is ~80 to 90 % (figures 6e and f). Figure 7. (a) Digital photograph of the dye sensitized solar cell with rGO-Co-TAPc counter electrode. (b) Photoconversion efficiency of DSSCs with different counter electrodes as mentioned in the figure. (c) Photo conversion efficiency of Pt and rGO-Co-TAPc based DSSCs as function of storage time. (d) Schematic illustration of DSSC wherein the energy level of the counter electrodes and electrolyte are shown for different M-TAPcs. In a slightly different direction, metal phthalocyanine - rGO composites (rGO-M-TAPc; M = Co, Zn, Fe) have been explored as counter electrodes in DSSC. Figure 7a depicts the digital image of a DSSC constructed using rGO-Co-TAPc as the counter electrode. It has been observed that rGO-cobalt tetraamino phthalocyanine (rGO-Co-TAPc) counter electrode exhibits ~6.6 % of solar conversion efficiency (figure 7b) and is close to that of standard DSSC (Pt counter electrode) under identical experimental conditions and are highly stable (figure 7c). Other metal phthalocyanines show less efficiency and is analysed based on the relative positions of HOMO energy levels of the materials and the energy level of the redox system (I-/I3- system) as given in figure 7d. The thesis contains eight chapters on aspects discussed above along with summary and future perspectives given at the end. It is devided into various chapters in two sections, one comprising inorganic chalcogenide-based electrocatalysts and another comprising organic electrode materials. Appendix I discusses the Na-storage behaviour of MoS1.0Se1.0 and appendix II describes the Li-storage behaviour of rGO functionalized benzoquinone and diamino anthraquinone electrode materials.

Page generated in 0.0705 seconds