• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 90
  • 13
  • 7
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 149
  • 149
  • 49
  • 42
  • 33
  • 29
  • 28
  • 27
  • 21
  • 17
  • 12
  • 11
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Catalytic Asymmetric Isomerizations of Alkynes To Allenes And Their Diastereoselective Functionalization Facilitated By An Organomanganese Auxiliary

Unknown Date (has links)
The present dissertation research is largely focused on the methods to synthesize highly substituted allene derivatives from alkynes in conjugation with carbonyl-containing functional groups. A key aspect of this research involves methylcyclopentadienylmanganese dicarbonyl (MMD), an inexpensive and air-stable organometallic auxiliary linked to alkynyl carbonyls via an η2-bond. This auxiliary influences bond formation to achieve enhanced stereoselectivity without itself undergoing any chemical transformation. Chapter 1 accounts various examples of such transition metal auxiliaries including MMD. Typically conjugated alkynyl carbonyls do not isomerize to thermodynamically less favored allenes. However, with the MMD auxiliary in place, alkynyl carbonyl compounds undergo facile 1,3-proton shifts in the presence of a mild base to produce allene isomers. Although allenyl aldehydes are important building blocks, we note that direct methods to prepare them nonracemically are not known. Chapter 2 describes the development of a new cinchonine-based phase transfer catalyst to access non-racemic allenyl aldehydes from MMD-complexed alkynyl aldehydes. With the manganese auxiliary in place, nonracemic allenyl aldehydes were obtained in a weakly basic biphasic reaction system via enantioselective protonation conditions. Chapter 3 describes the second use of the MMD auxiliary to direct nucleophilic addition reactions to allenyl aldehydes for the preparation of 2,3-allenols diastereoselectively. In the absence of the MMD auxiliary, nucleophilic reactions to the carbonyl group of axially chiral allenyl aldehydes is poorly diastereoselective, which is a long-standing problem. We observed that, in addition to leading to non-racemic allenyl aldehydes, the MMD auxiliary could also be used to improve diastereoselectivity in carbonyl additions due to its proximal position on the 2,3-bond of the allenyl aldehyde. Chapter 4 describes the use of allenyl esters as metathesis quenching agents. It was observed that the addition of an allenyl ester after a metathesis reaction was complete; facilitate the removal of most ruthenium metal impurities using simple silica chromatographic purification. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
102

Preparation and characterization of nanocrystalline cerium-based oxides as a carbon monoxide oxidation catalyst.

January 2005 (has links)
Ho Chun Man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references. / Abstracts in English and Chinese. / ABSTRACT --- p.iv / DECLARATION --- p.vi / ACKNOWLEDGEMENT --- p.vii / TABLE OF CONTENTS --- p.viii / LIST OF TABLES --- p.xi / LIST OF FIGURES --- p.xii / Chapter Chapter One: --- Introduction --- p.1 / Chapter 1.1 --- Overview --- p.1 / Chapter 1.2 --- Fundamental of CeO2 --- p.2 / Chapter 1.3.1 --- Synthesis and Modification of Ceria-based Materials --- p.5 / Chapter 1.3.1 --- Synthetic Method --- p.5 / Chapter 1.3.2 --- "Mesoporous Structure of Ce02, CexZr1-x02" --- p.6 / Chapter 1.3.3 --- Doped Ce02 Materials --- p.6 / Chapter 1.3.4 --- Fabrication of Ceria and Cerium-based Nanoparticles --- p.7 / Chapter 1.4 --- Scope of work --- p.8 / Chapter 1.5 --- References --- p.11 / Chapter Chapter Two: --- Meso- and Macro-porous Pd/CexZr1-x02 as Carbon Monoxide Oxidation Catalysts --- p.16 / Chapter 2.1 --- Introduction --- p.16 / Chapter 2.2 --- Experimental Section --- p.18 / Chapter 2.2.1 --- Sample Preparation - Synthesis of the Catalyst Support --- p.18 / Chapter 2.2.2 --- Addition of Pd to the Catalyst Support --- p.19 / Chapter 2.2.3 --- Characterization --- p.20 / Chapter 2.2.4 --- Carbon monoxide oxidation measurement --- p.21 / Chapter 2.3 --- Results and Discussion --- p.22 / Chapter 2.3.1 --- XRD analysis --- p.22 / Chapter 2.3.2 --- SEM and TEM --- p.25 / Chapter 2.3.3 --- N2-Soprtion --- p.32 / Chapter 2.3.4 --- X-ray Photoelectron Spectroscopy --- p.40 / Chapter 2.3.5 --- Thermal Catalysis Study --- p.45 / Chapter 2.4 --- Conclusion --- p.52 / Chapter 2.5 --- References --- p.54 / Chapter Chapter Three: --- Morphology-Controllable Synthesis of Ce02 Nano and Meso-structures --- p.60 / Chapter 3.1 --- Introduction --- p.60 / Chapter 3.2 --- Experimental Section --- p.62 / Chapter 3.2.1 --- Materials and Experimental Conditions --- p.62 / Chapter 3.2.2 --- Characterization --- p.64 / Chapter 3.3 --- Results and Discussion --- p.67 / Chapter 3.3.1 --- SEM and TEM Analysis --- p.67 / Chapter 3.3.2 --- XRD Analysis --- p.75 / Chapter 3.3.3 --- N2-Soprtion --- p.78 / Chapter 3.3.4 --- X-ray Photoelectron Spectroscopy --- p.84 / Chapter 3.3.5 --- FT-IR Analysis --- p.87 / Chapter 3.3.6 --- GC-MS Analysis --- p.89 / Chapter 3.3.7 --- Proposed Formation of Ce02 nanospheres and their transformation to microrods --- p.95 / Chapter 3.3.8 --- UV absorption spectra and band gap energies --- p.97 / Chapter 3.3.9 --- Thermal Catalysis Study --- p.100 / Chapter 3.4 --- Conclusion --- p.103 / Chapter 3.5 --- References --- p.105 / Chapter Chapter Four: --- Conclusion --- p.110 / LIST OF PUBLICATIONS --- p.112
103

Fabrication and characterization of a porous CuO/CeO₂/Al₂O₃ biomorphic compound. / 多孔生物遺態氧化銅/氧化鈰/氧化鋁之複合物料的製作及其定性分析 / Fabrication and characterization of a porous CuO/CeO₂/Al₂O₃ biomorphic compound. / Duo kong sheng wu yi tai yang hua tong/yang hua shi/yang hua lu zhi fu he wu liao de zhi zuo ji qi ding xing fen xi

January 2009 (has links)
Chiu, Ka Lok = 多孔生物遺態氧化銅/氧化鈰/氧化鋁之複合物料的製作及其定性分析 / 趙家樂. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references. / Abstract also in Chinese. / Chiu, Ka Lok = Duo kong sheng wu yi tai yang hua tong/yang hua shi/yang hua lu zhi fu he wu liao de zhi zuo ji qi ding xing fen xi / Zhao Jiale. / Abstract --- p.i / 摘要 --- p.iii / Acknowledgment --- p.v / Table of contents --- p.vi / List of table captions --- p.x / List of figure captions --- p.xi / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Carbon monoxide (CO) --- p.1 / Chapter 1.2 --- Production of hydrogen from methanol for fuel cell --- p.2 / Chapter 1.3 --- Catalysts for CO oxidation and methanol reforming --- p.5 / Chapter 1.4 --- Copper-based catalysts --- p.6 / Chapter 1.5 --- Mechanisms in the catalytic processes --- p.7 / Chapter 1.6 --- Synthesis of Cu-based catalysts --- p.10 / Chapter 1.7 --- Potential applications of the biomorphic CuO/CeO2/Al2O3 catalyst --- p.11 / Chapter 1.8 --- Objectives and the thesis layout --- p.12 / Chapter 1.9 --- References --- p.13 / Chapter Chapter 2 --- Methods and Instrumentation --- p.16 / Chapter 2.1 --- Sample preparations --- p.16 / Chapter 2.1.1 --- Syntheses of the biomorphic samples --- p.16 / Chapter 2.1.2 --- Syntheses of the control samples (R1 and R2) --- p.17 / Chapter 2.2 --- Characterization --- p.18 / Chapter 2.2.1 --- Scanning electron microscope (SEM) --- p.18 / Chapter 2.2.2 --- Transmission electron microscopy (TEM) --- p.19 / Chapter 2.2.3 --- X-ray powder diffractometry (XRD) --- p.20 / Chapter 2.2.4 --- Fourier transform infrared (FTIR) spectroscopy --- p.21 / Chapter 2.2.5 --- Raman scattering (RS) spectroscopy --- p.22 / Chapter 2.2.6 --- Differential thermal analysis (DTA) --- p.22 / Chapter 2.2.7 --- Thermogravimetric analysis (TGA) --- p.23 / Chapter 2.2.8 --- Gas sorption surface analysis (GSSA) --- p.24 / Chapter 2.3 --- Catalytic activity --- p.25 / Chapter 2.3.1 --- CO oxidation --- p.25 / Chapter 2.3.2 --- Partial oxidation of methanol (POMe) --- p.27 / Chapter 2.3.3 --- Steam reforming of methanol (SRMe) --- p.28 / Chapter 2.4 --- References --- p.29 / Chapter Chapter 3 --- "Results, discussions and characterization" --- p.31 / Chapter 3.1 --- Biomorphic samples --- p.31 / Chapter 3.1.1 --- Macrostructures --- p.31 / Chapter 3.1.2 --- SEM and TEM results --- p.32 / Chapter 3.1.3 --- XRD analysis and chemical compositions --- p.35 / Chapter 3.1.4 --- RS results --- p.41 / Chapter 3.1.5 --- FTIR results --- p.44 / Chapter 3.1.6 --- Thermal property --- p.46 / Chapter 3.1.7 --- Porosity analysis --- p.48 / Chapter 3.2 --- Control sample R1 --- p.52 / Chapter 3.2.1 --- Microstructures --- p.52 / Chapter 3.2.2 --- Surface area and porosity --- p.55 / Chapter 3.2.3 --- Thermal property --- p.56 / Chapter 3.2.4 --- "XRD, FTIR and RS results" --- p.58 / Chapter 3.3 --- Control sample R2 --- p.60 / Chapter 3.3.1 --- Microstructures --- p.60 / Chapter 3.3.2 --- Surface area and porosity --- p.61 / Chapter 3.3.3 --- "XRD, FTIR and RS results" --- p.62 / Chapter 3.3.4 --- Thermal property --- p.63 / Chapter 3.4 --- Formation mechanisms of the biomorphic samples --- p.64 / Chapter 3.5 --- Impacts of the Cu/Ce/Al ratios on the CuO dispersion --- p.66 / Chapter 3.6 --- Cotton biotemplate --- p.66 / Chapter 3.7 --- Formation mechanisms of R1 and R2 --- p.67 / Chapter 3.8 --- References --- p.69 / Chapter Chapter 4 --- Evaluations of Catalytic Activities --- p.71 / Chapter 4.1 --- CO oxidation --- p.71 / Chapter 4.2 --- POMe --- p.79 / Chapter 4.3 --- SRMe --- p.91 / Chapter 4.4 --- Physical properties of the biomorphic samples before and after the reactions --- p.97 / Chapter 4.5 --- Structure of the sample and its catalytic performance --- p.102 / Chapter 4.6 --- CuO dispersion and the catalytic performance --- p.103 / Chapter 4.7 --- Al2O3 and CeO2 and the catalytic performance --- p.105 / Chapter 4.8 --- Catalytic performance of the biomorphic samples and R2 --- p.108 / Chapter 4.9 --- References --- p.109 / Chapter Chapter 5 --- Conclusions and suggestions for further studies --- p.110 / Chapter 5.1 --- Conclusions --- p.110 / Chapter 5.2 --- Future works --- p.112 / Chapter 5.3 --- References --- p.114
104

Synthesis of amino acids by metal-catalysed reactions

Teoh, Euneace Ching Mei January 2004 (has links)
Abstract not available
105

The effect of catalyst properties on the synthesis of carbon nanotubes by plasma enhanced chemical vapor deposition

Cheemalapati, Surya Venkata Sekhar 08 November 2012 (has links)
A study of the effect of catalyst properties on the synthesis of carbon nanotubes (CNTs) is done in this thesis. Three different metal alloy catalysts, Fe/Ti, Ni/Ti, Co/Ti, have been studied. Various atomic concentrations and thicknesses were cosputter deposited on clean Si wafers using AJA Orion 4 RF Magnetron sputter deposition tool at 5mtorr and 17��C, and the films were characterized using a scanning electron microscope, Energy-dispersive X-ray spectroscopy. All the alloys have been annealed at 650��C and 3 torr in an argon atmosphere at 100 SCCM, followed by ammonia gas plasma etch at different powers at 3 torr and 50 SCCM NH��� flow in a modified parallel plate RF chemical vapor deposition tool for 1 minute. The influence of plasma power, thickness of catalyst and concentration of Ti the secondary metal in the alloy composition, on the surface morphology of the catalyst are investigated by characterizing them with atomic force microscopy. The study has shown that the surface roughness is affected by Ti concentration, thickness and plasma power. The 35 W power NH��� plasma produced rougher surfaces when compared to the 75 W NH��� plasma. The result is interpreted as follows: ion bombardment leads to greater etching of the catalyst surface. Thus, plasma power must be optimized for catalyst thin film and etch time. The study has provided an in depth analysis and understanding of the various factors that influence catalyst surface morphology which can be applied into further study for optimizing parameters for synthesis of single walled CNTs. Following this, a study on catalysts for CNT synthesis was performed using Plasma enhanced chemical vapor deposition and characterized by scanning electron microscope. CNTs were synthesized on Ni, Ni-Ti, Co, Co-Ti and Fe catalyst. Ni, Ni-Ti catalyst produced forest like vertically aligned CNTs whereas Co, Co-Ti produced vertically aligned free standing CNTs. The growth was dense and uniform across the substrate. Initial growth runs on Fe, Fe-Ti alloy did not produce any CNTs until catalyst was restructured with a thicker Ti under layer after an investigation using Secondary ion mass spectrometry of suspected Fe catalyst poisoning due to reaction with Si substrate. A room temperature run was carried out on annealed and plasma etched Ni catalyst and no CNTs were produced indicating the importance of substrate temperature of CNTs. A deeper understanding of factors of influence on CNTs such as catalyst types, structure/morphology, and substrate temperature has been achieved with this study. / Graduation date: 2013
106

The Use of Soluble Polyolefins as Supports for Transition Metal Catalysts

Hobbs, Christopher Eugene 2011 August 1900 (has links)
The use of polymer supports for transition metal catalysts are very important and useful in synthetic organic chemistry as they make possible the separation and isolation of catalysts and products quite easy. These polymer-bound ligands/catalysts/reagents can, often, be recovered and recycled numerous times and typically yield products in high purity, negating the need for further purification steps (i.e. column chromatography). Because of this, interest in these systems has garnered international attention in the scientific community as being “Green”. Historically, insoluble, polymer-supports (i.e. Merrifield resin) were used to develop recoverable catalysts. This has the advantage of easy separation and isolation from products after a reaction; because of their insolubility, such supported catalysts can be easily removed by gravity filtration. However, these catalysts often have relatively poor reactivity and selectivity when compared to homogeneous catalysts. Because of this disadvantage, our lab has had interest in the development of soluble polymer-supports for transition metal catalysts. We have developed several separation methods for these soluble polymer-bound catalysts. These include thermomorphic liquid/liquid and solid/liquid as well as latent biphasic liquid/liquid separation techniques. This dissertation describes the use of both, latent biphasic liquid/liquid separation systems and thermomorphic solid/liquid separation systems. In order to perform a latent biphasic iii liquid/liquid separation, a polymer-bound catalyst must have a very high selectivity for one liquid phase over the other. Our lab has pioneered the use of polyisobutylene (PIB) oligomers as supports for transition metal catalysts. Previous work has shown that these oligomers are > 99.96 % phase selectively soluble in nonpolar solvents. This has allowed us to prepare PIB-supported salen Cr(III) complexes that can be used in a latent biphasic liquid/liquid solvent system. The synthesis of these complexes is quite straightforward and such species can be characterized using solution state 1H and 13C NMR spectroscopy. Also, these complexes can be used to catalyze the ring opening of meso epoxides with azidotrimethylsilane (TMS-N3) and can be recovered and recycled up to 6 times, with no loss in catalytic activity. To perform a thermomorphic solid/liquid separation, a polymer-bound catalyst that is completely insoluble at room temperature but soluble upon heating must be used. Our lab has pioneered the use of polyethylene oligomers (PEOlig) as supports for transition metal catalysts. Such PEOlig-supported catalysts are able perform homogeneous catalytic reactions at elevated temperatures (ca. 65 ○C), but, upon cooling, precipitate out of solution as solids while the products stay in solution. This process allows for the easy separation of a solid catalyst from the product solution. Described herein, is the development of PEOlig-supported salen-Cr(III) complexes and PEOlig-supported NHC-Ru complexes. The preparation of these complexes is also straightforward and such species can be characterized using solution state variable temperature (VT) 1H and 13C NMR spectroscopy. In the case of the PEOlig-supported salen-Cr(III) complex, it was found to be a recoverable/recyclable catalyst for the ring opening of epoxides with TMS-N3 and could be reused 6 times with no loss in activity. The PE-supported NHC-Ru complex was able to be used as a recyclable ring closing metathesis (RCM) catalyst and could be used up to 10 times.
107

Rh-catalyzed reductive coupling under hydrogenation conditions and nucleophilic catalysis via phosphine conjugate addition

Kong, Jongrock, 1972- 28 August 2008 (has links)
At the threshold of the 21st centry, a new set of challenges is defined by the need to develop sustainable means of preparing chemical commodities demanded by society. Hence, such concepts as atom economy, step economy, and 'green chemistry' have become the requirements for the development of synthetic reactions. Hydrogenation is one of the most powerful catalytic methods which successfully satisfy the stated requirements of modern chemistry. Accordingly, catalytic hydrogenation has been tremendously utilized in industrial settings. The profound impact of hydrogenation portended a powerful approach to reductive carbon-carbon bond formation under hydrogenation conditions, resulting in the discovery of the Fischer-Tropsch process and hydroformylation. However, since this discovery, processes have restricted to the incorporation of a single carbon monoxide unit. Even though there are a few seminal contributions, systematic efforts toward the development of hydrogen-mediated carboncarbon bond forming processes beyond hydroformylation have been absent from the literature. In an exciting advance, the Krische group has shown that it is possible to reductively couple two or more organic molecules simply through their exposure to gaseous hydrogen in the presence of a metal catalyst. This finding has led to the development of a broad, new family of hydrogen-mediated C-C bond formation. Herein, related to hydrogen-mediated C-C bond formation, the overview of metal catalyzed intermolecular reductive coupling in the presence of reducing agents such as borane, silane, alane, metal, and hydrogen is presented. Chapter 2 describes systematic approaches to the development of hydrogen-mediated C-C bond formation and successful preliminary results achieved by our research group. Chapters 3 and 4 will describe the further extension of these hydrogen-mediated C-C bond formations including (1) hydrogen-mediated reductive couplings of conjugated alkynes with iminoacetates, (2) hydrogen-mediated reductive couplings of 1,3-enynes with [alpha]-ketoesters, and (3) hydrogen-mediated multicomponent reductive couplings. The development of catalytic systems for the nucleophilic activation of enones using phosphine catalysts has received attractive attention. Recently, an intramolecular variant of the Rauhut-Currier reaction was developed in our lab. To further extend nucleophilic phosphine catalysis, we have sought to develop new catalytic methodology via phosphine conjugate addition. Chapter 5 describes two new methodologies related to their area: (1) catalytic cycloallylation via nucleophilic phosphine catalysis and (2) allylic amination of Morita-Baylis-Hillman acetates. / text
108

Hydrogen-mediated carbon-carbon bond formations: applied to reductive aldol and Mannich reactions

Garner, Susan Amy, 1980- 28 August 2008 (has links)
Hydrogen gas is the cleanest and most cost-effective reductant available to mankind, and the use of hydrogen gas in catalytic hydrogenation reactions is one of the oldest and most utilized organic reactions. Although catalytic hydrogenation has been practiced in industry on enormous scale, the use of hydrogen gas as a terminal reductant in C-C bond forming reactions has been limited to processes involving the migratory insertion of carbon monoxide such as: alkene hydroformylation and the Fischer-Tropsch reaction. A significant advance to the field of synthetic organic chemistry would be the expansion of C-C bond forming reactions beyond reductive coupling via carbon monoxide insertion. Herein, related metal catalyzed reductive couplings to [alpha],[beta]-unsaturated compounds in the presence of reducing agents such as: silane, borane, and hydrogen are reviewed. The following chapters discuss the development of hydrogen-mediated reductive aldol and Mannich reactions. The results from this body of work clearly demonstrate that hydrogen-mediated C-C bond forming reactions are emerging as a powerful tool for synthetic chemists.
109

Ανάπτυξη και χαρακτηρισμός καινοτόμων καταλυτών για την αντίδραση μετατόπισης του CO με ατμό σε χαμηλές θερμοκρασίες και κινητική μελέτη

Παναγιωτοπούλου, Παρασκευή 14 February 2008 (has links)
Στη παρούσα εργασία μελετάται η ανάπτυξη και ο χαρακτηρισμός καινοτόμων υποστηριγμένων καταλυτών ευγενών μετάλλων για την αντίδραση μετατόπισης του CO με ατμό (Water Gas Shift, WGS) σε χαμηλές θερμοκρασίες καθώς και η κινητική της εν λόγω αντίδρασης. Εξετάστηκε η επίδραση των φυσικοχημικών και μορφολογικών χαρακτηριστικών της διεσπαρμένης μεταλλικής φάσης (Pt, Pd, Ru, Rh) και του φορέα (οξείδια μετάλλων) καθώς και της χρήσης προωθητών (αλκάλια, αλκαλικές γαίες) στην καταλυτική ενεργότητα. Μεγαλύτερη δραστικότητα παρατηρήθηκε για καταλύτες Pt υποστηριγμένους σε αναγώγιμα οξείδια, κυρίως TiO2 και CeO2. Η φαινόμενη ενέργεια ενεργοποίησης της αντίδρασης, Ea, είναι ανεξάρτητη από τη φύση του μετάλλου, όταν τα ευγενή μέταλλα διασπείρονται στους φορείς TiO2 και CeO2. Αντιθέτως για τους καταλύτες Μ/Al2O3, η φαινόμενη ενέργεια ενεργοποίησης της αντίδρασης, Ea, εξαρτάται από τη φύση του μετάλλου, υποδεικνύοντας ότι η αντίδραση WGS, σε καταλύτες ευγενών μετάλλων υποστηριγμένων σε μη αναγώγιμους φορείς, ακολουθεί διαφορετικό μηχανισμό. Για καταλύτες Pt/TiO2, Ru/TiO2, Pt/CeO2 και Pt/Al2O3 η μετατροπή του CO αυξάνεται με αύξηση της περιεκτικότητας του καταλύτη σε μέταλλο. Ωστόσο ο εγγενής ρυθμός της αντίδρασης ανά επιφανειακό άτομο μετάλλου και η φαινόμενη ενέργεια ενεργοποίησης της αντίδρασης, Ea, δεν εξαρτώνται από τη φόρτιση (0-5 wt.%) και το μέγεθος των κρυσταλλιτών (1.3-16nm) του μετάλλου. Η επίδραση των μορφολογικών χαρακτηριστικών του φορέα στην καταλυτική ενεργότητα μελετήθηκε σε καταλύτες Pt/TiO2, και Pt/CeO2. Για τους καταλύτες Pt/TiO2 βρέθηκε ότι η μετατροπή του CO σε χαμηλές θερμοκρασίες βελτιώνεται σημαντικά όταν ο Pt διασπείρεται σε φορείς με μικρότερο μέγεθος κρυσταλλιτών. Η συχνότητα αναστροφής (TOF) του CO αυξάνεται κατά δύο τάξεις μεγέθους καθώς μειώνεται το μέγεθος των κρυσταλλιτών του TiO2 από 35 σε 16 nm, με παράλληλη μείωση της ενέργειας ενεργοποίησης από 16.9 έως 11.9 kcal/mol. Βρέθηκε, με χρήση τεχνικών θερμοπρογραμματιζόμενης αναγωγής (TPR) και φασματοσκοπίας Raman και FTIR, ότι η παρατηρούμενη αύξηση της ενεργότητας καταλυτών Pt/TiO2 οφείλεται σε αύξηση της αναγωγιμότητας του φορέα TiO2, η οποία αυξάνεται με μείωση του μεγέθους των κρυσταλλιτών του. Τα αποτελέσματα παρέχουν σημαντικές ενδείξεις για τη συμμετοχή του φορέα στο μηχανισμό της αντίδρασης WGS είτε άμεσα, μέσω του οξειδοαναγωγικού (redox) μηχανισμού, είτε έμμεσα, μέσω του συνδυαστικού (associative) μηχανισμού. Και στις δύο περιπτώσεις, φαίνεται ότι η παρουσία μερικώς ανηγμένων σωματιδίων TiO2 στην περιοχή κοντά στο διεσπαρμένο Pt, είναι απαραίτητη για την παραγωγή ενεργών κέντρων στη διεπιφάνεια μετάλλου/φορέα. Σε αντίθεση με τους καταλύτες Pt/TiO2, για τους καταλύτες Pt/CeO2 βρέθηκε ότι τόσο η συχνότητα αναστροφής του CO όσο και η ενέργεια ενεργοποίησης της αντίδρασης δεν εξαρτώνται σημαντικά από τα μορφολογικά χαρακτηριστικά του φορέα, τουλάχιστον υπό τις παρούσες πειραματικές συνθήκες. Η ενίσχυση του φορέα με κατάλληλη ποσότητα αλκαλίων (Na, K, Li, Cs) οδηγεί σε σημαντική αύξηση της ενεργότητας των καταλυτών Pt/TiO2. Βρέθηκε ότι σε όλες τις περιπτώσεις, η συχνότητα αναστροφής του CO περνάει από μέγιστο σε καταλύτες με περιεκτικότητα Pt:Αλκάλιο=1:1. Βέλτιστη συμπεριφορά παρουσίασε ο φορέας ενισχυμένος με Na, για τον οποίο παρατηρήθηκε ότι ο εγγενής ρυθμός της αντίδρασης ανά επιφανειακό άτομο Pt τριπλασιάζεται καθώς αυξάνεται η περιεκτικότητα σε Na από 0 σε 0.06 wt.%. Η προσθήκη αλκαλικών γαιών (CaO, SrO, BaO, MgO) στο φορέα οδηγεί σε σημαντική βελτίωση της καταλυτικής ενεργότητας των καταλυτών Pt/TiO2. Βέλτιστη συμπεριφορά παρουσιάζουν οι καταλύτες ενισχυμένοι με CaO και SrO σε περιεκτικότητα 2 wt.%, οι οποίοι έχουν υποστεί θερμική κατεργασία στους 600OC. Αύξηση της περιεκτικότητας CaO από 0 σε 4 wt.% έχει σαν αποτέλεσμα ο εγγενής ρυθμός της αντίδρασης να περνάει από μέγιστο, για το δείγμα με 2 wt.% CaO, του οποίου η συχνότητα αναστροφής του CO είναι ~2.5 φορές μεγαλύτερη συγκριτικά με το μη ενισχυμένο δείγμα. Τα αποτελέσματα των πειραμάτων Η2-TPD έδειξαν ότι, για καταλύτες ενισχυμένους με Na, Cs, CaO, WO3, καθώς και για καταλύτες M/TiO2 (M:Pt, Rh, Ru, Pd), ο ρυθμός της αντίδρασης ανά επιφανειακό άτομο Pt εξαρτάται από την ισχύ των θέσεων ρόφησης στη διεπιφάνεια μετάλλου/φορέα και περνάει από μέγιστο για μία ορισμένη τιμή της θερμοκρασίας εκρόφησης του υδρογόνου από τις θέσεις αυτές. Τα αποτελέσματα των πειραμάτων FTIR έδειξαν ότι η ενίσχυση των καταλυτών Pt/TiO2 με Na, Cs και CaO, οδηγεί σε αύξηση του πληθυσμού των ροφημένων ειδών CO στη διεπιφάνεια μετάλλου/φορέα. Το αντίθετο παρατηρείται για τον ενισχυμένο με WO3 καταλύτη. Για τους καταλύτες αυτούς καθώς και για τους Rh/TiO2 και M/Al2O3 (M: Pt, Ru, Pd), βρέθηκε ότι ο ρυθμός της αντίδρασης WGS αυξάνεται με ελάττωση της θερμοκρασίας διάσπασης των φορμικών ειδών. Τα αποτελέσματα υποδεικνύουν ότι η καταλυτική συμπεριφορά καθορίζεται σε μεγάλο βαθμό από τα φυσικοχημικά χαρακτηριστικά του φορέα, με τις καταλυτικά ενεργές θέσεις να εντοπίζονται στη διεπιφάνεια. Ο πληθυσμός και η ισχύς ρόφησης των ενεργών κέντρων και, επομένως, η καταλυτική ενεργότητα τροποποιούνται από τις αλληλεπιδράσεις μετάλλου/φορέα και από την ύπαρξη προωθητών. Η κινητική μελέτη της αντίδρασης WGS, σε καταλύτες Pt/TiO2 και Pt/0.34%Cs-TiO2, έδειξε ότι αύξηση της περιεκτικότητας του CO ή του Η2Ο στη τροφοδοσία οδηγεί σε αύξηση του ρυθμού, προσθήκη Η2 στην τροφοδοσία μειώνει σημαντικά τον ρυθμό ενώ το CO2 αφήνει το ρυθμό πρακτικά ανεπηρέαστο. Βρέθηκε ότι η αντίδραση είναι τάξης 0.5 ως προς CO, 1 ως προς Η2Ο, ~0 ως προς CO2 και ~-0.7 ως προς Η2. Τα κινητικά αποτελέσματα και για τους δύο καταλύτες προσαρμόζονται ικανοποιητικά σε εξίσωση ρυθμού που βασίζεται σε μηχανισμό ο οποίος περιλαμβάνει ρόφηση του H2O στο φορέα, ρόφηση των CO, Η2Ο, CO2 και Η2 στο μέταλλο, σχηματισμό ενδιάμεσων φορμικών ειδών στην επιφάνεια του φορέα και εκρόφηση των προϊόντων CO2 και H2. Τέλος μελετήθηκε η επίδραση του χρόνου επαφής στη συμπεριφορά καταλυτών 0.5%Pt/TiO2, 0.5%Pt/1%CaO-TiO2(Cal.600OC), 1%Pt/1%CaO-TiO2(Cal.600OC) και ενός εμπορικού καταλύτη και βρέθηκε ότι αύξηση του χρόνου επαφής (W/F) από 0.03 έως 0.20 × 3 g s/cm , οδηγεί σε σταδιακή αύξηση της μετατροπής του CO. Οι καταλύτες αυτοί υποβλήθησαν σε πειράματα μακροχρόνιας σταθερότητας, σε συνθήκες αντίδρασης, και από τα αποτελέσματα φαίνεται ότι η μετατροπή του CO παραμένει πρακτικά σταθερή για συνολικό χρόνο αντίδρασης περίπου 60 ώρες. Τα αποτελέσματα της παρούσας εργασίας μπορούν να χρησιμοποιηθούν για το «σχεδιασμό» και την ανάπτυξη καταλυτών οι οποίοι θα εκπληρώνουν τις προϋποθέσεις για χρήση σε εφαρμογές παραγωγής υδρογόνου για την τροφοδοσία κυψελίδων καυσίμου. / In the present study, a detailed investigation has been carried out in an attempt to identify the key physichochemical parameters which determine the catalytic activity of supported noble metal catalysts for the water-gas shift (WGS) reaction. A kinetic model, has been also developed, which can describe the kinetics of the reaction. The catalytic activity of supported noble metal catalysts (Pt, Rh, Ru, Pd) for the WGS reaction investigated with respect to the structural and morphological properties of the dispersed metallic phase and the support. It has been found that Pt catalysts are generally more active than Ru, Rh and Pd, and exhibit significantly higher activity when supported on “reducible” (TiO2, CeO2, La2O3, YSZ) rather than on “irreducible” (Al2O3, MgO, SiO2) metal oxides. Titania-supported platimum is more active than the well-studied Pt/CeO2 catalyst, especially in the temperature range of 200-250oC. When noble metals are dispersed on “reducible” oxides, such as CeO2 and TiO2, the apparent activation energy (Ea) of the reaction does not depend on the nature of the metallic phase but only on the nature of the support. In contrast, Ea differs from one metal to another when supported on an irreducible oxide, such as Al2O3, indicating that a different reaction mechanism is operable. Conversion of CO at a given temperature, for all metal-support combinations investigated, increases significantly with increasing metal loading in the range of 0.1-5.0 wt.%. However, activation energy and specific activity (TOF) do not depend on the morphological and structural characteristics of the metallic phase, such as loading, dispersion and crystallite size. The effect of the morphology of the support on catalytic performance has been investigated over Pt catalysts supported on four commercial titanium dioxide carriers with different structural characteristics (surface area, primary crystallite size of TiO2). It has been found that conversion of CO at low temperatures (<300oC) is significantly improved when Pt is dispersed on TiO2 samples of low crystallite size. The turnover frequency of CO increases by more than two orders of magnitude with decreasing crystallite size of TiO2 from 35 to 16 nm, with a parallel decrease of activation energy from 16.9 to 11.9 kcal/mol. This is attributed to the higher reducibility of smaller titania crystallites, as evidenced from the results of temperature programmed reduction (TPR) techniques and in situ Raman and FTIR spectroscopies. H2 and CO-TPR experiments, demonstrated that the reducibility of titania, increases with increasing the specific surface area of the catalyst or, conversely, with decreasing the primary particle size ze ( TiO2 d ) of the support. This has been proven by the results of in situ Raman experiments conducted under hydrogen flow which showed that formation of substoichiometric TiOx species initiates at lower temperatures and is more facile over Pt/TiO2 catalysts with smaller titania particle sizes. FTIR experiments provide evidence that the reaction takes place via interaction between CO and hydroxyl groups of the support, with intermediate production of formates. Partial reduction of the support results in the creation of new sites for CO adsorption, probably located at the metal/support interface, which have been tentatively assigned to metallic Pt in contact with Ti3+ ions. The observed enhancement of the WGS activity of Pt/TiO2 catalysts with increasing the reducibility of the support (decreasing TiO2 d ) may be explained by both the “regenerative” and the “associative” mechanism of the reaction. In contrast to what has been found over Pt/TiO2 catalysts, catalytic activity of dispersed Pt and the apparent activation energy of the reaction do not depend on the structural and morphological characteristics of CeO2, at least in the range of surface areas (3.3-57 m2/g) and primary crystallite sizes (10-32 nm) investigated. The catalytic performance of titania-supported platinum catalysts for the WGS reaction can be significantly improved by addition of small amounts of alkali (Na, K, Li, Cs) promoters. The catalyst promoted with Na exhibits better catalytic performance, compared to Li-, Cs- and K-promoted samples. It has been also found that, at least in the case of Na- and Cs-promoted catalysts, the specific catalytic activity (TOF) goes through a maximum for alkali:Pt atomic ratios of 1:1. The catalytic activity of Pt/TiO2 catalysts can be also improved by addition of alkaline earth (CaO, SrO, BaO, MgO) promoters. Optimal results were obtained for the catalysts promoted with 2 wt.% CaO and SrO, the specific activity (TOF) of which is about 2.5 times higher compared to that of the unpromoted catalyst. The results of H2-TPD experiments, over Na, Cs, CaO and WO3-promoted Pt/TiO2 catalysts and M/TiO2 (M:Pt, Rh, Ru, Pd) catalysts, demonstrated that the reaction rate (TOF) depends on the strength of the adsorption sites at the metal/support interface and goes through a maximum for a specific temperature of hydrogen desorption from theses sites. FTIR experiments provide evidence that the addition of Na, Cs and CaO over Pt/TiO2 catalysts results in an increase of the population of CO species adsorbed at the metal/support interface. It has also been found (CO-TPD experiments) that the turnover frequency of CO increases with decreasing the temperature of the decomposition of formate species, which may be produced by interaction between CO adsorbed on platinum with hydroxyl groups of TiO2 at the metal/support interface. The above results indicate that the catalytic performance of supported noble metal catalysts for the WGS reaction depends strongly on the physichochemical characteristics of the support. The population and the strength of the catalytic active sites, probably located at the metal/support interface, can be altered due the metal-support interactions and the presence of promoters. The kinetic investigation of the WGS reaction has being carried out over Pt/TiO2 and Pt/0.34%Cs-TiO2 catalysts. It was found that the reaction rate increases with increasing the partial pressure of CO or H2O in the feed composition. The addition of H2 in the reaction mixture results in a substantial decrease of the reaction rate, while the partial pressure of CO2 does not affect the reaction rate. It has also been found that the reaction order is 0.5, 1, ~-0.7 and ~0 for CO, H2O, H2 and CO2, respectively. The kinetic results were modelled by a rate expression based on a mechanism reaction, which includes H2O adsorption on the support, CO, H2O, H2 and CO2 adsorption on Pt, formation of intermediate formate species on the support and finally desorption of H2 and CO2. The effect of contact time on the catalytic performance has been investigated, under realistic reaction conditions, over 0.5%Pt/TiO2, 0.5%Pt/1%CaO-TiO2(Cal.600OC), 1%Pt/1%CaOTiO2 (Cal.600OC) and a commercial catalyst. It has been found that the conversion of CO at a given temperature increases with increasing W/F between 0.03 and 0.20 × 3 g s/cm. The conversion of CO of the above catalysts is remained constant, under reaction conditions, for about 60 hours. The results of the present study, can be used to develop active, selective and stable LT-WGS catalysts suitable for Fuel Cell applications.
110

The development of cationic zinc complexes as a new class of lactide polymerization catalyst

Wheaton, Craig Andrew January 2011 (has links)
The thesis outlines the development of novel cationic zinc complexes for application in lactide polymerization catalysis. These complexes were characterized spectroscopically and crystallographically, and where appropriate their efficacy as catalysts for the polymerization of lactide was evaluated. The strongly donating, neutral chelating ligands employed in this study were prepared by installation of either one or two phosphinimine donors on a dibenzofuran backbone. An efficient synthetic methodology was then developed for the synthesis of cationic complexes of the formula [LZnE+][BAr4-], wherein E = C2H5, CH3, Ph, C6F5, OAc, OC6F5, or methyl-(D,L)-lactate, and AR = Ph, C6F5, or m-(CF3)2-C6H3. Only the cationic zinc-lactate species were found to be highly active polymerization catalysts. Tuning of the steric and electronic properties of the ligand resulted in the discovery of zinc-lactate systems that promote rapid and well-controlled polymerization of lactide under mild conditions, marking the first well-defined cationic metal catalysts to do so. / xxiv, 254 leaves : ill. ; 29 cm + 1 CD-ROM

Page generated in 0.0665 seconds