• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of a Shape Optimized Metallic Nano-heater

Dewanjee, Arnab 11 July 2013 (has links)
The absorption of the energy in the form of heat from electromagnetic radiation is strongly dependent on the shape of the surface. Also, the transfer of this generated thermal energy is dependent on the surface area of the object in contact with the surrounding medium. Here in this thesis, we present a structural optimization method for metal nanostructures based on the shape dependency of their electromagnetic heat dissipation and thermodynamic transfer to the surroundings. We have used a parallel genetic algorithm (GA) in conjunction with a coupled electromagnetic (FDTD) and thermodynamic modeling of the metallic nanostructures for the optimization. The optimized nano-structure demonstrates significant improvement in electromagnetic heating in the spectral window of optimization as well as expedited cooling properties. The symmetry of the structures which is inherent in the design procedure makes them independent of the polarization at normal incidence and insensitive to the azimuthal direction of incidence.
2

Design of a Shape Optimized Metallic Nano-heater

Dewanjee, Arnab 11 July 2013 (has links)
The absorption of the energy in the form of heat from electromagnetic radiation is strongly dependent on the shape of the surface. Also, the transfer of this generated thermal energy is dependent on the surface area of the object in contact with the surrounding medium. Here in this thesis, we present a structural optimization method for metal nanostructures based on the shape dependency of their electromagnetic heat dissipation and thermodynamic transfer to the surroundings. We have used a parallel genetic algorithm (GA) in conjunction with a coupled electromagnetic (FDTD) and thermodynamic modeling of the metallic nanostructures for the optimization. The optimized nano-structure demonstrates significant improvement in electromagnetic heating in the spectral window of optimization as well as expedited cooling properties. The symmetry of the structures which is inherent in the design procedure makes them independent of the polarization at normal incidence and insensitive to the azimuthal direction of incidence.

Page generated in 0.0873 seconds