• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Músculo de McKibben aplicado em manipulador não condutor. / McKibben\'s muscle applied in non-conductive manipulator.

Lopes, Ivo da Paz 19 May 2014 (has links)
Quando as atividades de um sistema mecatrônico são realizadas em ambientes com intenso campo elétrico e ou magnético, os dispositivos que irão executar as tarefas devem ser cuidadosamente projetados para que a presença de peças metálicas não se torne um risco. O campo elétrico pode gerar descargas elétricas e o campo magnético, exercer forças não previstas sobre peças metálicas. Assim o uso de alguns elementos, como motores elétricos, peças metálicas ou sensores eletrônicos se torna inviável. A motivação inicial para esse trabalho foi encontrar um atuador que possa ser construído sem o uso de elementos metálicos e com ele, construir um manipulador inerte a campos magnéticos e elétricos. Neste contexto, a transmissão de energia para os atuadores por meios hidráulicos ou pneumáticos se torna a opção mais indicada. Frequentemente, sistemas pneumáticos e hidráulicos apresentam atuadores com componentes metálicos, devido a resistência mecânica destes componentes. Em situações na qual os requisitos quanto a esforços são menores, elementos metálicos podem ser substituídos por materiais poliméricos de uso comum na Engenharia. Entre os atuadores hidráulicos e pneumáticos, um que já apresenta poucas partes metálicas é o músculo pneumático artificial (MPA). O MPA possui características tais como: baixo peso relacionado ao esforço gerado, escala de esforços similar a um cilindro pneumático de mesmo tamanho e construção simples. Assim, o MPA foi escolhido como atuador para o manipulador não-condutor desenvolvido neste trabalho. Adotando o MPA como elemento central, este trabalho tem por objetivo identificar as diretrizes para a aplicação do MPA na construção de um manipulador inerte a campos elétricos e magnéticos. Para isso, primeiramente foi desenvolvido um MPA livre de qualquer parte metálica. Visando sua aplicação, as características do músculo como: gama de esforços, tempo de resposta e histerese foram avaliadas através de testes. Algumas estratégias de controle do atuador foram testadas e comparadas, e com o atuador desenvolvido foi construído um manipulador inerte a campos magnéticos e elétricos. O manipulador construído tem como objetivo exercer movimentos distintos sobre a mão de um paciente, o mesmo deve acompanhar o paciente durante um exame de ressonância magnética. O atuador apresentou uma gama de esforços dentro do previsto, um tempo de resposta característico de atuadores pneumáticos e ao contrário do esperado, uma baixa histerese. Através de elementos mecânicos e com o uso de dois MPA, o manipulador foi capaz de exercer um trabalho sobre a mão de um voluntario fora do campo da RM, mostrando a viabilidade da aplicação. / When activities executed by a mechatronic system are performed in environments with strong magnetic and or electric field, the devices that will perform the tasks should be carefully designed so that the presence of metal parts does not become a risk. The electric field can generate electrical currents and the magnetic field may exert unexpected force in a metal part. Thus the use of some elements, such as electric motors, metallic parts or electronic sensors becomes unviable. The initial motivation for this work was to find an actuator that could be built without metallic elements and, using such actuator, build a manipulator inert to magnetic and electric fields. In this context, the use of hydraulic or pneumatic actuators becomes the most indicated option. Frequently, pneumatic and hydraulic systems have actuators with metal parts so as resist mechanical loads. In situations where the actuator is loaded by small loads, metal parts may be replaced by polymeric materials commonly used in Engineering. Among hydraulic and pneumatic actuators, one that already presents a few metal parts is the pneumatic artificial muscle (PAM). PAM has characteristics such as: low weight to effort ratio, simple construction as well as range of generated force and dimensions similar to a pneumatic cylinder. Thus, the PAM is chosen as the actuator for the non-conductive manipulator developed in this work. Adopting the PAM as a central element, this work aims identifying directives on using the PAM in the construction of a manipulator inert to electric and magnetic fields. For this, firstly it is developed a PAM free from any metal part. Next, the characteristics of the PAM such as range of efforts, response time and hysteresis curve are assessed through tests. Some strategies for the actuator control are tested and compared. Finally, using the developed actuator, a manipulator inert to magnetic and electric fields are constructed. The purpose of this manipulator is to induce motions to the fingers of a patient hand while the patient is examined in a MRI (magnetic resonance imaging) equipment. The actuator presented a range of efforts according to expectations, a response time compatible with pneumatic actuators and, contrary to expectations, low hysteresis.
2

Músculo de McKibben aplicado em manipulador não condutor. / McKibben\'s muscle applied in non-conductive manipulator.

Ivo da Paz Lopes 19 May 2014 (has links)
Quando as atividades de um sistema mecatrônico são realizadas em ambientes com intenso campo elétrico e ou magnético, os dispositivos que irão executar as tarefas devem ser cuidadosamente projetados para que a presença de peças metálicas não se torne um risco. O campo elétrico pode gerar descargas elétricas e o campo magnético, exercer forças não previstas sobre peças metálicas. Assim o uso de alguns elementos, como motores elétricos, peças metálicas ou sensores eletrônicos se torna inviável. A motivação inicial para esse trabalho foi encontrar um atuador que possa ser construído sem o uso de elementos metálicos e com ele, construir um manipulador inerte a campos magnéticos e elétricos. Neste contexto, a transmissão de energia para os atuadores por meios hidráulicos ou pneumáticos se torna a opção mais indicada. Frequentemente, sistemas pneumáticos e hidráulicos apresentam atuadores com componentes metálicos, devido a resistência mecânica destes componentes. Em situações na qual os requisitos quanto a esforços são menores, elementos metálicos podem ser substituídos por materiais poliméricos de uso comum na Engenharia. Entre os atuadores hidráulicos e pneumáticos, um que já apresenta poucas partes metálicas é o músculo pneumático artificial (MPA). O MPA possui características tais como: baixo peso relacionado ao esforço gerado, escala de esforços similar a um cilindro pneumático de mesmo tamanho e construção simples. Assim, o MPA foi escolhido como atuador para o manipulador não-condutor desenvolvido neste trabalho. Adotando o MPA como elemento central, este trabalho tem por objetivo identificar as diretrizes para a aplicação do MPA na construção de um manipulador inerte a campos elétricos e magnéticos. Para isso, primeiramente foi desenvolvido um MPA livre de qualquer parte metálica. Visando sua aplicação, as características do músculo como: gama de esforços, tempo de resposta e histerese foram avaliadas através de testes. Algumas estratégias de controle do atuador foram testadas e comparadas, e com o atuador desenvolvido foi construído um manipulador inerte a campos magnéticos e elétricos. O manipulador construído tem como objetivo exercer movimentos distintos sobre a mão de um paciente, o mesmo deve acompanhar o paciente durante um exame de ressonância magnética. O atuador apresentou uma gama de esforços dentro do previsto, um tempo de resposta característico de atuadores pneumáticos e ao contrário do esperado, uma baixa histerese. Através de elementos mecânicos e com o uso de dois MPA, o manipulador foi capaz de exercer um trabalho sobre a mão de um voluntario fora do campo da RM, mostrando a viabilidade da aplicação. / When activities executed by a mechatronic system are performed in environments with strong magnetic and or electric field, the devices that will perform the tasks should be carefully designed so that the presence of metal parts does not become a risk. The electric field can generate electrical currents and the magnetic field may exert unexpected force in a metal part. Thus the use of some elements, such as electric motors, metallic parts or electronic sensors becomes unviable. The initial motivation for this work was to find an actuator that could be built without metallic elements and, using such actuator, build a manipulator inert to magnetic and electric fields. In this context, the use of hydraulic or pneumatic actuators becomes the most indicated option. Frequently, pneumatic and hydraulic systems have actuators with metal parts so as resist mechanical loads. In situations where the actuator is loaded by small loads, metal parts may be replaced by polymeric materials commonly used in Engineering. Among hydraulic and pneumatic actuators, one that already presents a few metal parts is the pneumatic artificial muscle (PAM). PAM has characteristics such as: low weight to effort ratio, simple construction as well as range of generated force and dimensions similar to a pneumatic cylinder. Thus, the PAM is chosen as the actuator for the non-conductive manipulator developed in this work. Adopting the PAM as a central element, this work aims identifying directives on using the PAM in the construction of a manipulator inert to electric and magnetic fields. For this, firstly it is developed a PAM free from any metal part. Next, the characteristics of the PAM such as range of efforts, response time and hysteresis curve are assessed through tests. Some strategies for the actuator control are tested and compared. Finally, using the developed actuator, a manipulator inert to magnetic and electric fields are constructed. The purpose of this manipulator is to induce motions to the fingers of a patient hand while the patient is examined in a MRI (magnetic resonance imaging) equipment. The actuator presented a range of efforts according to expectations, a response time compatible with pneumatic actuators and, contrary to expectations, low hysteresis.

Page generated in 0.2193 seconds