• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 17
  • 12
  • 8
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 150
  • 150
  • 91
  • 70
  • 39
  • 36
  • 36
  • 20
  • 17
  • 15
  • 15
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Particle dispersion in aluminium and magnesium alloys

Yang, Xinliang January 2016 (has links)
High shear mixing offers a promising solution for particle dispersion in a liquid with intensive turbulence and high shear rate, and has been widely used in the chemical, food and pharmaceutical industries. However, a practical high shear mixing process has not yet been adapted to solve the particle agglomeration in metallurgy due to the high service temperature and reactive environment of liquid metal. In this study, the effect of high shear mixing using the newly designed rotor-stator high shear device have been investigated with both Al and Mg matrix composites reinforced with SiC particles through casting. The microstructural observation of high shear treated Al and Mg composites show improved particle distribution uniformity in the as-cast state. Increased mechanical properties and reduced volume fraction of porosity are also obtained in the composite samples processed with high shear. With the melt conditioning procedure developed for twin roll casting process, two distinct solutions has been provided for thin gauge Mg strip casting with advanced microstructure and defect control. The melt conditioning treatment activates the MgO as heterogeneous nuclei of α-Mg through dispersion from continuous films to discrete particles. Thus enhanced heterogeneous nucleation in the twin roll casting process not only refines the α-Mg grain size but also eliminates the centre line segregation through equiaxed grain growth and localized solute distribution. The grain refinement of the α-Mg through SiC addition has also been studied through EBSD and crystallographic approaches. Two reproducible and distinct crystallographic orientation relationships between α-SiC (6H) and α-Mg have been determined: [1010]SiC//[2113]Mg, (0006)SiC//(1011)Mg, (1216)SiC//(2202)Mg and [0110]SiC//[1100]Mg, (0006)SiC// (0002)Mg, (2110)SiC//(1120)Mg.
62

Plasma And Cold Sprayed Aluminum Carbon Nanotube Composites: Quantification Of Nanotube Distribution And Multi-Scale Mechanical Properties

Bakshi, Srinivasa R 29 May 2009 (has links)
Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si pre-alloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.
63

Characterization Of Indigenous Al-Zn-Mg/SiCp Metal Matrix Composites

Ravi Kumar, N V 03 1900 (has links) (PDF)
No description available.
64

Design and Performance of Metal Matrix Composite Composed of Porous Boron Carbide Created by Magnetic Field-Assisted Freeze Casting Infiltrated with Aluminum (A356)

Gamboa, Gerardo 05 1900 (has links)
Magnetic field-assisted freeze-casting was used to create porous B4C ceramic preforms. An optimum slurry consisted of a mixture of B4C powders with 6 wt.% Er2O3 powder in an H2O-PVA solution and was cooled at a rate of 1 °C/min from room temperature to -30 °C resulting in porous green state ceramic preform with vertical channels. The Er2O3 powder was added to improve the magnetic response of the slurry. The preform was then sublimated to remove H2O and then sintered. The sintered ceramic preform was then infiltrated in the most vertically aligned channel direction with molten Al (A356) metal through a vacuum-assisted pump to create the metal matrix composite (MMC). Finite element analysis simulations were used to analyze and predict the anisotropic effect of B4C channel alignment on mechanical properties. The mechanical properties of the composite were then experimentally found via compression testing, which was compared with rule-of-mixtures and finite element modeling simulations, to analyze the effect of anisotropy due to magnetic field-assisted freeze-casting. This study reinforces the viability of cost-effective magnetic field-assisted freeze-casting as a method to create highly directional ceramic preforms, which can be subsequently metal infiltrated to produce MMCs with highly anisotropic toughness.
65

Exploration of New High Entropy Alloys (HEA) and HEA-reinforced Metal Matrix Composites Using a CALPHAD-based Approach

Huang, Xuejun January 2021 (has links)
No description available.
66

Graphene Oxide Reinforcement in Plasma Sprayed Nickel-5%Aluminum Coatings

Ward, David 01 January 2014 (has links)
Metallic plasma sprayed coatings are widely used in the aerospace industry for repair on worn engine components. However, the inherent defects in these coatings limit the variety of repairs and reduce the service life of the repaired parts. A potential solution to overcome this problem is to mix small amounts of inexpensive graphene oxide in the powder feedstock. The incredible strength to weight ratio of graphene oxide makes it a viable additive to improve mechanical properties of metallic plasma sprayed coatings. The powder system chosen for this research is Nickel-5Aluminum since it is a common coating for such repairs. The greatest challenge was retaining graphene oxide, which combusts at 400°C, while melting the Nickel above 1450°C using a high temperature plasma plume. Graphene oxide was successfully retained in the coatings using either of two configurations: (1) Injecting the graphene oxide powder via solution suspension separately from the metal powder, or (2) Installing a shroud on the front of the plasma gun and backfilling with Argon to inhibit combustion. The uniquely designed solution suspension configuration resulted in a higher deposition efficiency of graphene oxide while the inert shroud configuration had a more homogeneous distribution and retention of graphene oxide in the coatings. The best overall coating was achieved using the inert shroud configuration using a powder mixture containing 2% weight Edge Functionalized Graphene Oxide. Vickers microhardness increased 46% and tensile adhesion strength increased 26% over control samples. This is possible due to the mechanisms of dislocation strengthening and stress transfer previously reported in graphene oxide reinforced Aluminum composites formed by flake powder metallurgy. It was also observed that the energy released by the combustion of graphene oxide helps to uniformly melt the Nickel particles and improve the coating microstructure, allowing for more forgiving spray parameters. The methods developed and results attained in this research open opportunities for graphene oxide to be added as inexpensive reinforcements to other metallic compositions for widespread use in metal matrix composite manufacturing.
67

Analysis of Creep Behavior and Parametric Models for 2124 Al and 2124+SiC Composite

Taminger, Karen M. B. 05 March 1999 (has links)
The creep behavior of unreinforced 2124 aluminum and 2124 aluminum reinforced with 15 w/o silicon carbide whiskers was studied at temperatures from 250 F to 500 F. Tensile tests were conducted to determine the basic mechanical properties, and microstructural and chemical anyalyses were performed to characterize the starting materials. The creep, tensile, and microstructural data for the 2124+SiC composite were compared with a similarly processed unreinforced 2124 aluminum alloy. Applying the basic theories for power law creep developed for common metals and alloys, the creep stress exponents and activation energies for creep were determined from the experimental data. The results were used to identify creep deformation mechanisms and compared to predicted values based on a parametric approach for creep analysis. The results demonstrate the applicability of traditional creep analysis on non-traditional materials. / Master of Science
68

Sedimentation during Liquid Processing of Metal Matrix Composites

Lafrenière, Serge 10 1900 (has links)
During the incorporation of ceramic particles into metallic alloy melts for the production of metal matrix composites, the particles tend to float or sink, depending on their density. In order to study the sedimentation patterns, a novel electrical resistance technique has been developed. A current is passed between two electrodes, and the potential over a fixed distance is measured with two other electrodes. Experiments were carried out in an aluminum foundry alloy(A356) containing up to 30 volume percent 88 μm silicon carbide particles. The particles’ behaviour was compared with sedimentation patterns in aqueous systems. The implications for fabrication and remelting of metal matrix composite material are discussed. / Thesis / Master of Engineering (ME)
69

Toward Load Bearing Reconfigurable Radio Frequency Antenna Devices Using Ultrasonic Additive Manufacturing

Wolcott, Paul Joseph 31 August 2012 (has links)
No description available.
70

Characterization and Modeling of Active Metal-Matrix Composites with Embedded Shape Memory Alloys

Hahnlen, Ryan M. 20 December 2012 (has links)
No description available.

Page generated in 0.0325 seconds