• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 138
  • 19
  • 17
  • 8
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 264
  • 264
  • 264
  • 66
  • 64
  • 64
  • 49
  • 37
  • 35
  • 34
  • 33
  • 29
  • 27
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Formation of Functionalized Supramolecular Metallo-organic Oligomers with Cucurbituril

Del Valle, Ian M. January 2015 (has links)
No description available.
22

Luminescent Properties of Anthracene-based Metal-Organic Frameworks

Rowe, Jennifer Maria 30 June 2016 (has links)
Metal-organic frameworks (MOFs) are crystalline materials composed of metal clusters and organic ligands. MOFs that exhibit photoluminescence are promising materials for a broad range of applications. Due to their structural tunability and crystalline nature, luminescent MOFs also provide an excellent platform for studying structure–property relationships of materials. The photophysical properties of three anthracene-dicarboxylic acids – 1,4-anthracene dicarboxylic acid (1,4-ADCA), 2,6-anthracene dicarboxylic acid (2,6-ADCA) and 9,10-anthracene dicarboxylic acid (9,10-ADCA) – were studied in a series of polar aprotic solvents using steady-state absorption, steady-state emission spectroscopy and time-correlated single photon counting (TCSPC) emission lifetime spectroscopy. The addition of carboxylic acid functional groups on the anthracene ring alters photophysical properties to varying degrees depending on the location and protonation state. Density functional theory (DFT) calculations reveal that the lowest-energy ground-state structures of both 2,6-ADCA and 1,4-ADCA have dihedral angles between the carboxylic acids and aromatic planes of θ = 0°, while the same dihedral angle increases to θ = 56.6° for 9,10-ADCA. Time-dependent DFT calculations suggest that the carboxyl groups of 1,4-ADCA and 2,6-ADCA remain coplanar with the anthracene ring system in the excited state. In contrast, the calculations reveal significant changes between the ground and excited geometries for 9,10-ADCA and puckering of the anthracene moiety of is observed. The three anthracene dicarboxylic acids were then incorporated into zirconium-based MOFs. The MOF structures were characterized using powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM). The steady-state absorption and emission spectra as well as the fluorescence lifetimes of the MOFs were compared to that of the corresponding ligand in solution. The MOFs comprising 9,10-ADCA and 2,6-ADCA formed highly crystalline octahedral shaped crystals and were found to be isostructural with the well-known UiO-66 and UiO-67 frameworks. However, incorporation of the 1,4-ADCA ligand resulted in large rod-shaped crystals. The absorption spectra of the MOFs are broadened and redshifted compared with that of the corresponding free ligands. The emission spectra of the MOFs constructed from 9,10-ADCA and 1,4-ADCA display emission bands that resemble that of the free ligand in acidic solutions, but are slightly broadened and redshifted in the MOF. Little difference is observed between that of 2,6-ADCA within the MOF and in acidic solution. The broadening and redshift observed in the absorption and emission is indicative of intermolecular interactions between anthracene units and/or with the Zr4+ clusters. The fluorescence lifetimes measured for the anthracene-based MOFs show a long component, comparable to the lifetime of the free ligand, along with shorter component. This may also suggest intermolecular interactions between chromophores in the MOFs. Altogether, derivatization of anthracene was shown to have specific effects on the photophysical properties of the parent anthracene molecule. These properties are further altered when the ligand is incorporated into a metal organic framework. Such systematic studies can provide a guide in designing luminescent MOFs with the excited-state properties desired for a given application. / Master of Science
23

Caracterización de la Adsorción de Hidrógeno en MOFs por Métodos Químico-Computacionales

Gómez Hernández, Diego Armando 11 October 2012 (has links)
En los últimos años, los esfuerzos para desarrollar una fuente de energía limpia y econó³micamente viable se han incrementado. Estos esfuerzos surgen como respuesta al creciente consumo de combustibles y al alto impacto ambiental y socio-político de la exploración y el uso de hidrocarburos o energía nuclear. Una de las alternativas más prometedoras exploradas hoy en díaa es el uso de H2 como vector energético. Sin embargo, existen algunas limitaciones relacionadas con la producciónn y almacenamiento que deben ser superadas. Centrados en el problema del almacenamiento de H2 , en esta investigación se ha estudiado, empleando técnicas químico-computacionales, las propiedades físico-quí�micas que promueven la adsorción de hidrógeno en sólidos cristalinos microporosos metal-orgánicos (MOFs). A partir del análisis de los resultados, se han identificado algunos parámetros que pueden ser utilizados como referencia para orientar el diseño y la síntesis de nuevos MOFs con mejores propiedades para la adsorción de H2 . A lo largo del estudio, los siguientes aspectos han sido evaluadas en detalle: I. la naturaleza de las interacciones moleculares entre el adsorbato y los diferentes componentes del material y II. las características estructurales que promueven o limitar la adsorción. Estos aspectos fueron estudiados con técnicas de químico-computacionales, tales como cálculos de química cuántica (con métodos los semi-empíricos PM6, HF y MP2) y simulaciones de dinámica molecular y Monte Carlo. Los resultados se analizaron en una función de las propiedades fÃ�sicas de los ma- teriales seleccionados para el estudio. En una primera fase, la interacción de las moléculas de H2 con el MOF-5 se evaluaron a través de cálculos de química cuántica. En vista de que los sitios de adsorciónn más fuertes fueron localizados en posiciones cercanas a los Átomos del metal (Zn (II)), se realiza un estudio adicional con cuatro tipos de centros metálicos...... / Gómez Hernández, DA. (2012). Caracterización de la Adsorción de Hidrógeno en MOFs por Métodos Químico-Computacionales [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17462
24

Developing a strategy to evaluate the potential of new porous materials for the separation of gases by adsorption / Elaboration d'une stratégie pour évaluer le potentiel de nouveaux matériaux poreux pour la séparation des gaz par adsorption.

Wiersum, Andrew 07 December 2012 (has links)
Les Metal-Organic Framework (MOF) sont des adsorbants très prometteurs pour la séparation des gaz. Formés de centres métalliques reliés par des ligands organiques, ces matériaux présentent une structure organisée avec des pores de taille contrôlée ainsi que des surfaces et des volumes poreux très élevées. La possibilité de faire varier à la fois le centre métallique et le ligand organique donne aux MOFs une très grande diversité qu'on ne retrouve pas chez les zéolithes et les charbons actifs.L'objectif de cette étude a été d'évaluer le potentiel des MOFs en tant qu'adsorbants pour quatre procédés de séparation de gaz. En raison du grand nombre de MOFs disponibles, il a été nécessaire d'élaborer une stratégie pour identifier les matériaux les plus prometteurs dans chaque cas. Cette méthodologie comprend quatre étapes : une étape de criblage, une étape expérimentale, une étape de calcul et une étape d'évaluation.Pour l'étape de criblage, un nouvel appareil dit « à haut débit » a été développé pour mesurer des isothermes approximatives. Ensuite, un certain nombre de matériaux ont été retenus pour faire une étude plus approfondie de leurs propriétés d'adsorption. Des isothermes très précises ont été mesurées par gravimétrie tandis que les enthalpies d'adsorption ont été obtenues par microcalorimétrie. Dans l'étape de calcul, le modèle IAST a été utilisée pour prédire les sélectivités à partir des données en gaz pur. Enfin, les adsorbants ont été classés à l'aide d'un nouveau paramètre de sélection qui regroupe la sélectivité, la capacité efficace et l'enthalpie d'adsorption, où l'importance de chacun des paramètres peut être ajustée en fonction des besoins du procédé. / Metal-Organic Frameworks (MOFs) are seen to be one of the most promising classes of adsorbents for gas separations. Consisting of metal clusters connected by organic linkers to form a fully crystalline network, these materials have record breaking surface areas and pore volumes as well as a wide variety of pore structures and sizes. This, coupled with the possibility to use virtually any transition metal as well as functionalized linkers, gives MOFs the chemical and physical versatility often lacking in traditional adsorbents such as zeolites and activated carbons.The purpose of this study was to evaluate the potential of MOFs as adsorbents for four gas separations of interest to the petrochemical industry. Because of the diversity and number of MOFs available, a methodology was needed to help identify the most promising materials in each case. The proposed methodology comprises four stages: a screening step, an experimental step, a computational step and finally an evaluation step. For the first stage, a high-throughput setup was developed to measure rough adsorption isotherms. A number of materials were then selected for a more thorough investigation of their adsorption properties. Highly accurate isotherms were measured gravimetrically while precise adsorption enthalpies were obtained by microcalorimetry. Step three involved predicting the co-adsorption behaviour from the pure gas isotherms using the Ideal Adsorbed Solution Theory. Finally, the adsorbents were ranked based on a new selection parameter regrouping selectivity, working capacity and adsorption enthalpy where the importance of each term can be adjusted depending on the requirements of the process.
25

Nouveaux solides hybrides poreux luminescents à base de tétrazine / New fluorescent porous hybrid solids based on tetrazine

Rouschmeyer, Paul 23 November 2015 (has links)
La détection de faibles quantités de petites molécules volatiles, qu’elles soient polluantes, utilisées comme armes chimiques ou encore explosives présente un intérêt sociétal certain. Les polymères de coordination poreux (PCPs) ou ’Metal-Organic Frameworks‘ (MOFs) sont des solides poreux qui peuvent être décrits par l’association de ligands organiques et de briques inorganiques interagissant par liaisons fortes et définissant une structure cristalline avec des pores de différentes tailles et formes. La large gamme d'application de ces solides (séparation, stockage, biomédecine...) repose sur leurs diversités chimique et structurale. Par exemple, il est possible de synthétiser des MOFs luminescents en utilisant un ligand organique lui-même luminescent. Le coeur tétrazine et ses dérivés sont des bons candidats pour cet objectif, puisqu'ils présentent des propriétés de fluorescence remarquables : émission dans le visible (λem~560 nm), bon rendement quantique. De plus, cette fluorescence peut être modifiée par la présence de molécules riches en électrons, ce qui laisse envisager son utilisation comme capteur moléculaire. Nos travaux se sont de plus focalisés sur des métaux à haut degré d'oxydation (Al(III), Zr(IV)) susceptibles de conférer aux solides une stabilité en milieu aqueux adéquate pour les applications envisagées. Deux acides carboxyliques à base de tétrazine, adaptés à la préparation de MOFs, ont tout d'abord été synthétisés. Le premier a été utilisé pour préparer un MOF à base de zirconium.La structure du solide, et entre autres son caractère flexible, ainsi que ses propriétés optiques ont été étudiées. Particulièrement, ses performances en tant que capteur d'amines aromatiques et de phénol ont été évaluées. La réactivité du second ligand avec les ions lanthanides a aussi été explorée et plusieurs solides ont été isolés, leur structure, caractérisée. Leurs propriétés optiques ont été évaluées, afin d'établir des relations entre la structure du MOF et la fluorescence de la tétrazine. Ensuite, avec ce même ligand, une stratégie de synthèse à ligand mixte a été adoptée pour incorporer la tétrazine dans des MOFs. Il s'agit de partir d'une structure aux propriétés avantageuses (stabilité, porosité) et de substituer une partie de ses ligands organiques ‘inactifs’ par des tétrazines. Ceci peut s'effectuer pendant la synthèse ou via un traitement post-synthétique. Les propriétés optiques des solides obtenus ont été enfin étudiées et leur efficacité en tant que capteur évaluées. / Detection of low concentrations of small organic molecules, which can be hazardous, polluting or used as chemical weapons, represents a societal problem worth addressing. Metal-Organic Frameworks (MOFs) are a class of porous crystalline materials that can be described as an association of inorganic subunits and organic ligands defining an ordered structure with accessible cavities of various size and shape. The wide range of potential applications for these materials (biomedicine, gas separation, catalysis...) relies on their chemical and structural diversity, which allows combining porosity with additional properties. For example, it is possible to synthesize luminescent MOFs through the use of a luminescent organic ligand. The tetrazine core and its derivatives appear as good candidates for such a purpose, as they have a fluorescent emission in the visible spectrum (λem~560 nm) with a good quantum yield. In addition, this fluorescence can be affected by the presence of electron rich molecules, making their use possible as sensors for ions or organic molecules. Our work focused mainly on the design of MOFs based on tetrazine and cations of high charge density (Al(III), Zr(IV)) in order to ensure their stability in water, which is desirable in this field.Two different tetrazine dicarboxylic acids suitable for the preparation of MOFs were first synthesized. The first one was used to prepare a new MOF based on zirconium. The structure of this solid, together with its flexible character and its optical properties were investigated. Especially, its use for the sensing of aromatic amines and phenol was evaluated. The reactivity of the second ligand with lanthanide ions was then investigated and few solids were isolated and structurally characterized. Their optical properties have been studied, in order to establish some relationship between their structure and their fluorescence. Then, with the same ligand, a mixed-ligand strategy has been developed in order to incorporate the tetrazine into MOFs. This involves starting from a non-fluorescent MOF with interesting properties (stability, porosity) and substituting some of the 'inactive' ligands with these tetrazines. This was performed either during the synthesis or as a post-synthetic treatment. The spectroscopic properties of these solids were finally investigated and their efficiencies as sensors evaluated.
26

Metal-Organic Frameworks for Carbon Dioxide Capture : Using Sustainable Synthesis Routes

Deole, Dhruva January 2022 (has links)
Globally the combustion of fossil fuels has increased to a greater extent. Carbon dioxide (CO2) a major greenhouse gas isa by-product of such combustion practices. Increase in the quantity of CO2 emissions has resulted in serious environmental issues including global warming, ocean acidification, extreme weather, and much more leaving a direct impact on the human society. To reduce these emissions, we need a more efficient carbon dioxide capturing technology. Using advances in materials science and engineering we can develop newer technologies for the capture of carbon dioxide gas. Metal-organic frameworks (MOFs) constitute a class of three-dimensional porous materials. They have shown applicability in various fields including carbon dioxide capture. A vast variety of MOFs can be synthesized by selecting proper metal salts and organic-linkers to build up the MOF structure. This thesis focuses on the synthesis of MOFs through a sustainable process or green synthesis route. Most of the MOFs in this study have been synthesized at ambient temperature and pressure conditions with deionized water as the primary solvent. A total of eight MOFs were synthesized in this study using two organic-linkers namely, 1,2,4,5-tetrakis(4-carboxyphenyl)-benzene (H4TCPB) and 2,5-dihydroxy-1,4-benzoquinone (H2DHBQ). The metal-salts used were based on hafnium, zirconium, cerium, magnesium, iron and manganese. A number of qualitative and quantitative tests were carried out onthe MOF samples to ensure their quality of produce and performance. The primary focus was to test the materials for their capacity to uptake carbon dioxide (CO2) in a mixture of flue gases. The highest CO2 uptake capacity was recorded to be 3.02 mmol/g (at 293 K and 1 bar) by the H2DHBQ-magnesium based MOF. All the materials showed good results andwere proven to be reusable. All the synthesized MOFs were crystalline in nature, showed a single-phase microstructure and high surface area values. A supplementary study was conducted wherein the powdered MOFs were 3D printed by the Direct Ink Writing (DIW) technique using an alginate binder. The study was satisfactory because the MOFs after being 3D printed, managed to preserve their inherent properties and characteristics. The results were in par with that of their pristine MOF counterparts. / Den globala förbränningen av fossila bränslen har i allt större utsträckning ökat. Koldioxid (CO2) är en avde viktigast växthusgaserna och erhålls som biprodukt från många förbränningsmetoder. Den höga haltenkoldioxid i atmosfären har resulterat i allvarliga miljömässiga konsekvenser inklusive den globaluppvärmningen, försurning av haven, extremt väder och mycket mer som har en direkt påverkan på detmänskliga samhället. För att minska dessa utsläpp behöver vi en mer effektiv koldioxidinfångningsteknologi. Med hjälp av framsteg inom materialvetenskapen kan vi utveckla nyare tekniker för att fångakoldioxid.  Metallorganiska ramverk (MOFs) utgör en klass av tredimensionella porösa material. De har visat siganvändbara inom olika områden inklusive infångning av koldioxid. Många variation av MOF material kansyntetiseras från olika metallsalter och organiska ligander för att bygga upp MOF-strukturen. Dettaexamensarbete fokuserar på syntesen av metallorganiska ramverk via en grön syntesväg och en hållbarprocess. En stor del av MOF materialen som erhölls syntetiserades i rumstemperatur och vid normala tryckmed avjoniserat vatten som det primära lösningsmedlet. Åtta MOFs material syntetiserades i detta projekt med två olika organiska ligander, nämligen, 1,2,4,5-tetrakis(4-karboxifenyl)bensen (H4TCPB) och 2,5-dihydroxy-1,4-bensokinon (H2DHBQ). Metallsalternasom användes i synteserna baserades på hafnium(IV), zirkonium(IV), cerium(IV), magnesium(II), järn(II)och mangan(II). Ett antal kvalitativa och kvantitativa tester genomfördes på MOF:arna för att säkerställaderas kvalitet och prestanda. Det primära fokuset var att testa de olika materialen för deras förmåga att taupp koldioxid (CO2) i en blandning av olika gaser (så som kväve, N2). Den DHBQ-magnesium-baseradeMOF:en uppvisade den högsta CO2-upptagningsförmågan som var 3,02 mmol/g. Alla MOF material visadegoda resultat och visade sig även vara återanvändbara. Alla syntetiserade MOF:ar hade god kristallinitet,uppvisade en singulär fas samt hög ytarea. En kompletterande studie genomfördes där de syntetiserade MOFs materialen (i dess pulverform) 3Dprintades med hjälp av natriumalginat som bindemedel. Studien var lyckad eftersom MOF:arna erhöll entillämplig form/maktrostruktur samtidigt som materialen bevarade sina inneboende egenskaper efter 3Dprintningen.
27

Molecular simulation studies of metal organic frameworks focusing on hydrogen purification

Banu, Ana Maria January 2014 (has links)
The process of purifying hydrogen gas using pressure swing adsorption columns heavily relies on highly efficient adsorbents. Such materials must be able to selectively adsorb a large amount of impurities, and must also be regenerated with ease. The work presented in this thesis focuses on a novel class of porous solids, metal-organic frameworks (MOFs), and their potential for use as adsorbents in hydrogen purification processes. MOFs are tuneable structures, a property that can be exploited in order to achieve the desired characteristics that are beneficial for a specific application. The design or selection of MOFs for any separation process however, relies on a thorough understanding of the relationship between a framework’s characteristics and its adsorption and selective properties. In order to identify favourable MOF characteristics for the separation of hydrogen from typical impurities a systematic molecular simulation study is performed on a large group of MOFs. Features such as the presence of short linkers, amine groups and additional aromatic rings, and a high density of linker groups are found to increase the adsorbate - framework interaction strength, and reduce the free volume available inside the pores. Both of these effects are shown to enhance MOF selectivity for impurities. Two promising materials, exhibiting desirable features, Mn MIL-53 and MIL-47, are studied further through a variety of approaches. A combination of experimental work and molecular simulations are employed in order to assess the level of flexibility in Mn MIL-53 on uptake of CO2 and CH4. An investigation of the experimental and simulation adsorption and characterization data indicates that the framework undergoes structural changes, in order to accommodate CO2 molecules, but not CH4. The form of the framework during CO2 uptake is also shown to be strongly influenced by temperature. In the case of MIL-47, adsorption isotherms simulated for a wide range of gases overpredict experimental adsorption data, leading to an in-depth investigation of non-porous effects, force field suitability, and framework rigidity. Ab initio molecular dynamics studies of MIL-47 indicate that the benzene dicarboxylate linkers rotate about their symmetry axis to reach more energetically favourable configurations, an effect responsible for the discrepancies between simulated and experimental isotherms. The effect of MOF flexibility on adsorption is further highlighted in a study of Sc2BDC3, a material able to undergo structural changes in order to accommodate a variety of adsorbates. Molecular simulations show that structural changes in the framework are responsible for the creation of additional CO2 adsorption sites as pressure is increased, whereas methanol adsorption sites occupied at extreme pressure are stabilized by the formation of hydrogen bonds. Finally, the exceptionally robust UiO-66(Zr) and UiO-67(Zr) families of MOFs are analysed using a multi-scale simulation study combining molecular level and process-scale computational work, seeking to compare the materials to commercial adsorbents, and assess whether they are suitable for H2 purification through pressure swing adsorption (PSA). Of the four MOFs studied, UiO-66(Zr)-Br is the most promising, as it significantly outperforms commercial zeolites and activated carbons in H2 purification from steam methane reformer offgas.
28

Syntheses and Investigations of Photo and Radioluminescent Stilbene- and Anthracene- Based Lanthanide Metal-Organic Frameworks

Mathis, Stephan Roy, II 16 May 2016 (has links)
This research explores the synthesis of anthracene and stilbene-based metal-organic framework (MOF) structures as potential scintillating (radioluminescent) materials for use in the detection of gamma radiation. The organic molecules 9,10-anthracenedicarboxylic acid (ADCH2) and trans-4,4’-stilbenedicarboxylic acid (SDCH2), were each used as a linker, in combination with a range of lanthanide metal ions, to synthesize novel three dimensional MOF structures under hydrothermal conditions. With ADCH2, the early period lanthanides yield isostructures with the metal ion in higher coordination (nine) than for those with late period metals (seven). The ADC-MOFs show linker-based photoluminescence properties with well defined vibronic peaks in their emission profile and their emission (λmax~435 nm) blue shifting from that of the ADCH2 powder (~500 nm) and closer to the organic molecule in monomer arrangement (λmax ~ 420 nm). The structures also show photoluminescence lifetimes between 1 and 2 ns, which is similar to the reported value for monomeric anthracene units. The blue-shift and reduction in lifetime, compared to ADCH2, are indicative of minimal π-π interactions amongst the aromatic moieties, thereby limiting the non-radiative relaxation pathways. On exposure to ionizing radiation (protons and g- rays), the ADC-MOFs demonstrated scintillation properties, with a radioluminescence lifetime of ~ 6 ns which is similar to that of the ADCH2 powder. A combination of SDCH2 and lanthanide metal ions produced two isostructured MOFs containing Tm3+ and Er3+, under the hydrothermal synthesis conditions explored. The 3-D structure contained ultra large diamond-shaped pores with dimensions of 16 Å x 30 Å. A blue-shift of fluorescence spectra was observed for the SDC-MOF structures (λmax ~ 425 nm) compared to that of bulk SDCH2 powder (λmax ~475 nm), and closely resembling that of monomeric isolated SDC units (λmax~475 nm). Their photoluminescence lifetime is ~0.76 ns, about half of that observed for SDCH2 powder. The blue shift and reduction in lifetime (compared to SDCH2) is attributed to minimal π-π interactions between SDC units in the MOF structure, thus minimizing associated non-radiative relaxation pathways. The isolation of anthracene and stilbene in MOF structures therefore has the potential to improve their performance as scintillators.
29

Experimental and theoretical adsorption studies in tuneable organic-inorganic materials

Prosenjak, Claudia January 2009 (has links)
Adsorption processes are widely used for the storage and separation of gases in many industrial and environmental applications. The performance of the process depends strongly on the adsorbent and its interaction with the gases. Therefore, the idea of tailoring the adsorbent to the application by adapting the pore size and/or the chemical composition is very attractive. This work focuses on two groups of customizable hybrid materials: Firstly, in crystalline metal-organic frameworks (MOFs) the chemical and structural properties can be modified by changing the metal-oxide corner or the organic linker. Secondly, periodic mesoporous silica materials can be prepared with different pore sizes and geometries depending on the surfactant and its concentration and additionally modified with organic surface groups. The adsorption behaviour of the materials can be predicted by molecular simulation and thus the influence of modifications can be studied without the need of synthesising the material. For MOFs, the coordinates of the atoms can be obtained from XRD measurements. The quality of the predicted adsorption results was investigated for pure gas (methane, ethane, propane, nitrogen and carbon dioxide) and gas mixture (methane – carbon dioxide) adsorption on the metal-organic framework CuBTC. The comparison showed a good agreement between experimental and simulated results especially at low pressures. In order to create atomistic models for the mesoporous silica structures that are amorphous on the atomistic level, two existing simulation methods to model MCM-41-type materials were combined: micellar structures from coarse grained simulations that capture the phase separation in the surfactant/silica/solvent mixtures were used as input in kinetic Monte Carlo simulation that created the pore model on the atomistic level. The model created with this new methodology showed similar adsorption behaviour compared with a model created only with the kMC method using an ideal geometrical structure as micelle. The influence of modifications of the MOF structures (exchange of metal, linker length/composition and catenation) was investigated by Grand Canonical Monte Carlo simulations for hydrogen adsorption at low temperature and temperature controlled desorption. The peaks in the desorption spectra could be related to steps in the adsorption isotherms at 20 K.
30

Chemistry and Materials of the Lanthanides-From Discrete Clusters to Extended Framework Solids

Livera, Mutha Meringna Varuni Shashika, Livera, Mutha Meringna Varuni Shashika January 2016 (has links)
The research work reported in this dissertation is focused on exploring the systematic syntheses and characteristics of lanthanide-containing functional materials. Lanthanides have interesting properties that arise as a consequence of f-electrons, namely, magnetism, luminescence, and flexible coordination sphere. These studies were extended further into heterometallic systems containing transition metal ions, specifically Ni(II) and Co(II), to further explore the behavior of lanthanides in functional materials with addition of transition metal ions. The results include the high nucleraity lanthanide hydroxide clusters and metal-organic frameworks which showed potential applications in catalysis, separations, solid-state light-emitting devices and magnetism. Chapter 1 provides background on lanthanides and different types of lanthanide-containing materials, their properties, and potential applications followed by a synopsis to the research work in each chapter. In Chapter 2, the synthesis, structure characterization, magnetic studies and solution stability studies of a novel class of high-nuclearity lanthanide hydroxide cluster complexes {Ln54} with Chromogen I, a ligand transformed from in situ N-Acetyl-D-glucosamine are summarized. Attention is focused on this ligand transformation since it shows a possible pathway for selective and efficient transformation of biomass into useful chemicals with the unique coordination chemistry of lanthanides. The remainder of this chapter is focused on using hydroxylcarboxylic acids for the formation of high-nuclearity lanthanide hydroxide clusters with the aim of expanding the array of ligands that can be utilized for developing these systems. Chapter 3 discusses the synthesis, structural characterization and photoluminescence properties of a novel series of lanthanide metal-organic frameworks utilizing iminodiacetic acid as bridging ligand. The possibility of luminescence color tuning employing mixed metal system containing Eu and Tb was shown. The lifetimes for the luminescence systems were evaluated based on photo decay studies in order to understand the energy transfer processes in the mixed-metal system. An energy transfer from Tb to Eu was evident based on the data. Chapter 4 focuses on a 3d-4f heterometallic system based on Ni(II) that has been synthesized using a metalloligand approach. A metalloligand containing Ni was first synthesized and then used for further lanthanide coordination. The result of this effort was a bi-porous metal-organic framework (MOF) which contains both hydrophilic and hydrophobic pores. The magnetic studies showed weak antiferromagnetic interactions between the Ni centers and confirmed the absence of single-molecule magnet behavior. Chapter 5 explores another 3d-4f heterometallic system which contains Co(II) using a different synthetic approach than that reported in Chapter 4. A 2-D layer type MOF containing both Ln(III) (Ln= Pr, La, Nd) Co(II) was obtained with the use of iminodiacetic acid as the supporting ligand under solvothermal conditions which further extends to a 3-D network with extensive hydrogen bonding. Magnetic studies were carried out to explore the magnetic interactions between the metal ions and results were not conclusive due to the complicated intrinsic magnetic characteristics possessed by both Ln(III) and Co(II).Chapter 6 describes results on another lanthanide-containing MOF that assembles as a layered material creating channels between the layers. The structural analysis of the MOF of interest and other MOFs obtained under the controlled conditions were discussed. This work has potential applications as an advanced material for proton conductivity, intercalation, and ion exchange. Chapter 7 summarizes the body of work by examining the results and significance of the results presented in Chapters 2-6 and discusses the future directions possible for each project. Appendix A provides all the crystallographic information including bond lengths and angles.

Page generated in 0.0906 seconds