• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 9
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molekulare Dissoziation im elektronischen Grundzustand induziert durch Femtosekundenpulse im mittleren Infrarot

Windhorn, Lars. January 2003 (has links) (PDF)
München, Univ., Diss., 2003. / Computerdatei im Fernzugriff.
2

Molekulare Dissoziation im elektronischen Grundzustand induziert durch Femtosekundenpulse im mittleren Infrarot

Windhorn, Lars. January 2003 (has links) (PDF)
München, Univ., Diss., 2003. / Computerdatei im Fernzugriff.
3

Zur Synthese heteronuklearer, chalcogenzentrierter, spirocyclischer Übergangsmetallcarbonylkomplex

Klose, Stefanie. January 2002 (has links) (PDF)
Paderborn, Universiẗat, Diss., 2002.
4

Reaktionen von Metallcarbonylkomplexen mit mehrfunktionellen Aminosäuren und Aminosäurevorstufen

Meder, Hans-Joachim, January 1982 (has links)
Thesis (doctoral)--München, 1982.
5

Synthese und Reaktivität von Lewis-basischen Carbonylkomplexen der Gruppe 8 / Synthesis and reactivity of Lewis basic group 8 carbonyle complexes

Schneider, Christoph January 2016 (has links) (PDF)
Im Rahmen der vorliegenden Arbeit wurden Untersuchungen zur Lewis-Basizität von Carbonylkomplexen der Gruppe 8 durchgeführt. Hierzu wurde eine Reihe von Komplexen mit GaCl3 als Lewis-Säure zu den entsprechenden Lewis-Addukten umgesetzt. Durch Analyse der experimentell ermittelten spektroskopischen und strukturellen Parameter sowie auf der Basis von Transferexperimenten wurde die relative Lewis-Basizität dieser Verbindungen zueinander bestimmt. Durch Umsetzung von Eisenpenta-, -tetra- und -tricarbonylkomplexen mit den sterisch anspruchslosen Liganden PMe3, IMe und CNtBu mit der Lewis-Säure GaCl3 wurde eine Serie von GaCl3-Addukten dargestellt und diese durch NMR- und IR-Spektroskopie sowie Röntgenstruktur- und Elementaranalyse vollständig charakterisiert. Während die Eisentetracarbonyladdukte 36-38 die gleiche cis-Geometrie aufweisen ist die Adduktbildung bei den Eisentricarbonylen 43-45 mit Konformationsänderungen in den Addukten 46, 48 und 49 verbunden. Hierbei zeigen die GaCl3-Addukte 46, 48 und 49 drei unterschiedliche Geometrien. Vergleicht man die Fe-Ga-Bindungslängen beziehungsweise die Winkelsummen der ClGa-Cl-Winkel, so zeichnet sich ein Trend für die Lewis-Basizität in Abhängigkeit von der Natur der σ-Donorliganden ab. Demnach weisen die IMe-substituierten Eisencarbonyle im Vergleich zu den PMe3- beziehungsweise tBuNC-substituierten Analoga die höchste Lewis-Basizität auf. Zudem konnte belegt werden, dass die Lewis-Basizität auch durch die Anzahl an σ-Donorliganden im Komplex erhöht wird. Die schrittweise Erhöhung des sterischen Anspruchs der Liganden in den Eisencarbonylen erschwert die Adduktbildung und äußert sich auch in der trans-ständigen Anordnung der Lewis-Säure. Die Gegenwart von zwei sterisch anspruchsvollen Liganden verhindert indes die Adduktbildung mit GaCl3 und es kommt zu einer Disproportionierung der Lewis-Säure in eine kationische [GaCl2]+-Einheit, welche an das Eisenzentrum koordiniert und eine anionische [GaCl4]--Einheit, die als Gegenion fungiert. Neben dem elektronischen und sterischen Einfluss der Liganden auf die Lewis-Basizität und die Adduktbildung in Eisencarbonylen wurde auch der Einfluss des Zentralatoms untersucht. Hierzu wurden analoge Ruthenium- und Osmiumcarbonyle dargestellt und mit der Lewis-Säure GaCl3 umgesetzt. Hierbei wurde die Ligandensphäre im Vergleich zu den Eisencarbonylen nicht verändert. Um die M-Ga-Bindungsabstände untereinander vergleichen zu können, wurde aufgrund der unterschiedlichen Kovalenzradien der Zentralmetalle der relative Abstand (drel) herangezogen, wodurch die relativen Lewis-Basizitäten abgeschätzt werden konnten. Hierbei konnte der gleiche Trend wie bei den Eisencarbonyladdukten beobachtet werden, dass mit steigender Anzahl an σ-Donorliganden die Lewis-Basizität erhöht wird. Weiterhin liegt aufgrund der kleineren drel-Werte die Vermutung nahe, dass sowohl Ruthenium-, als auch Osmiumcarbonyle Lewis-basischer sind als die entsprechenden Eisencarbonyle. Diese Befunde wurden weiterhin durch Transferexperimente untermauert. Hierzu wurden verschiedene GaCl3-Addukte mit Carbonylkomplexen in CD2Cl2 umgesetzt und eine eventuelle Übertragung der Lewis-Säure GaCl3 NMR-spektroskopisch verfolgt. Hierdurch konnte gezeigt werden, dass die Lewis-Säure GaCl3 jeweils erfolgreich auf die Komplexe mit der höheren Anzahl an σ-Donorliganden übertragen wird, was deren höhere Lewis-Basizität belegt. Zudem konnte bestätigt werden, dass Ruthenium- und Osmiumcarbonyle Lewis-basischer als die analogen Eisencarbonyle sind, zwischen Ruthenium und Osmium bei gleicher Ligandensphäre jedoch kaum Unterschiede in der Lewis-Basizität vorgefunden werden. Zusätzlich wurden auch ausgewählte Gruppe 8-Carbonyladdukte mit dem literaturbekannten Platinkomplex [(Cy3P)2Pt] (7) umgesetzt. Hierbei wurde in allen Fällen ein Transfer von GaCl3 auf die Platinverbindung beobachtet, welche demnach die stärkste Lewis-Base in dieser Studie darstellt. Neben einkernigen GaCl3-Addukten wurden auch dinukleare Gruppe 8-Carbonyle dargestellt. Hierzu wurde anstelle von GaCl3 die Lewis-Säure Ag+ eingesetzt, was zur Bildung der zweikernigen Addukte 83-86 führte. Hierdurch konnte gezeigt werden, dass neben den Hauptgruppenmetallen wie Gallium auch Gruppe 8-Addukte mit Übergangsmetallen zugänglich sind. Des Weiteren konnten die zweikernigen Komplexe 87-89 mit chelatisierenden beziehungsweise verbrückenden Liganden dargestellt und deren Reaktivität gegenüber GaCl3 untersucht werden. Der Unterschied zwischen diesen beiden Ligandenarten besteht darin, dass der M-M-Abstand bei Verwendung von chelatisierender Liganden eher gering ist, weshalb hier immer noch M-M-Wechselwirkungen möglich sind, während diese bei Verwendung eines Brückenliganden verhindert werden. Ausgewählte Gruppe 8-Carbonyle wurden auch in Bezug auf ihre katalytische Aktivität in der Hydrosilylierung von Benzaldehyd (90) mit Phenylsilan (91) untersucht. Hierbei konnte gezeigt werden, dass NHC-substituierte Carbonylkomplexe einen höheren Umsatz ermöglichen als Phosphan- oder Isocyanid-substituierte Verbindungen. Zudem wurde deutlich, dass die analogen Ruthenium- und Osmiumcarbonyle eine wesentlich geringere Aktivität bei der Hydrosilylierung aufweisen als die Eisenanaloga, trotz einer höheren Lewis-Basizität. Abschließend konnten Halogenidabstraktionsreaktionen exemplarisch an den GaCl3-Addukten 46, 66 und 76 durch Umsetzung mit GaCl3 demonstriert werden, wodurch die kationischen dimeren Komplexe 104-106 erhalten wurden. In diesen Komplexen sind formal zwei [(Me3P)2(OC)3M-GaCl2]+-Einheiten durch Ga-Cl-Wechselwirkungen miteinander verbrückt. Im Gegensatz dazu führte die Umsetzung von 46, 66 und 76 mit Na[BArCl4] (101) zu keiner Chloridabstraktion. Stattdessen konnte eine Verbrückung zweier GaCl3-Adduktfragmente durch zwei Natriumkationen beobachtet werden. / This work describes a detailed study on the Lewis basicity of group 8 carbonyl complexes. Thus, a variety of carbonyl complexes was treated with GaCl3 as Lewis acid to afford the corresponding Lewis adducts. Based on the analysis of spectroscopic and structural parameters of these adducts as well as on transfer experiments it was possible to evaluate the relative Lewis basicities of the metal carbonyl complexes. The reaction of iron penta-, tetra- and tricarbonyl complexes with the sterically less demanding ligands PMe3, IMe and tBuNC with the Lewis acid GaCl3 yielded a series of GaCl3 adducts, which could be fully characterized by NMR- and IR-spectroscopy, as well as X-ray diffraction and elemental analysis. While the three iron tetracarbonyl adducts 36-38 adopt the same cis geometry, adduct formation of the iron carbonyl complexes 43-45 entails a conformational change in the adducts 46, 48 and 49. Here, different geometries were observed. Comparison of the Fe-Ga bond lengths and the sum of the Cl-Ga-Cl angles of the adducts revealed a clear trend for the Lewis basicity depending on the nature of the σ-donor ligand. Thus, IMe substituted complexes showed the greatest Lewis basicity as compared to their PMe3 and tBuNC substituted analogs. In addition, the more σ-donor ligands are present in the iron carbonyls, the higher their Lewis basicity. Stepwise increase of the steric demand of the σ-donor ligands makes the adduct formation more difficult, which is illustrated in a trans position of the GaCl3. The presence of two bulky ligands fully hampered the formation of simpler GaCl3 adducts. Instead disproportion reactions of the Lewis acid into cationic [GaCl2]+ and anionic [GaCl4]- unit took place, with the [GaCl2]+ fragment coordinated to the iron center and [GaCl4]- as counterion. In addition to the electronic and steric influences of the ligands on the Lewis basicity and the adduct formation process of iron carbonyl complexes, the influence of the central atom was also investigated. To this end, analogous ruthenium- and osmium carbonyl complexes were prepared and treated with GaCl3, while the ligand sphere was retained with respect to the iron carbonyl complexes. To enable a direct comparison of the M-Ga bond distances, the relative distance (drel) was employed, which accounts for the different covalent radii of the metal centers. Accordingly, the relative Lewis basicity of the different complexes could be evaluated. Here, the same trend as observed for the iron carbonyl complexes was revealed: the more σ-donor ligands are present, the higher the Lewis basicity. Also, the relativly small drel-values of the ruthenium- and osmium carbonyl complexes suggested a higher Lewis basicity as compared to the corresponding iron carbonyl complexes. These results were clearly validated by transfer experiments. In general, several GaCl3 adducts were reacted with carbonyl complexes in CD2Cl2 while a possible transfer of the Lewis acid GaCl3 was monitored by NMR spectroscopy. The results showed that the Lewis acid GaCl3 is transfered always to the complex with a higher number of σ-donor ligands, thus verifying the higher Lewis basictiy of the latter complexes. In addition, the experiments also showed that ruthenium- and osmium carbonyl complexes are more Lewis basic than analogous iron carbonyl complexes while ruthenium and osmium feature a similar Lewis basicity. Additionally, transfer experiments between group 8 carbonyl adducts and the well-known Lewis base [(Cy3P)2Pt] (7) were carried out, which highlighted the strong Lewis basic character of the platinum compound 7. In addition to these mononuclear GaCl3 adducts, several dinuclear group 8 carbonyl complexes were prepared. Therefore, Ag+ was used as Lewis acid instead of GaCl3, which resulted in the generation of the dinuclear adducts 83-86. These results demonstrated that not only main group metals as gallium, but also transition metals can be employed in the syntheses of group 8 carbonyl adducts. It was also possible to prepare the dinuclear complexes 87-89 featuring either chelating or bridging ligands and to study their reactivity towards GaCl3. The main difference between these two classes of ligands is provided by the fact that the M-M disctance is much smaller in complexes bearing chelating ligands for which reason M-M communication remains possible here. By contrast, employing bridging ligands such an interaction can be ruled out completely. Selected group 8 carbonyl complexes were also used in catalysis experiments to evaluate their catalytic activity in the hydrosilylation of benzaldehyde (90) with phenylsilan (91). The study showed that NHC substituted carbonyl complexes enable a significantly higher turnover than phosphine- or isocyanid substituted complexes. In addition, ruthenium- and osmium carbonyl complexes are far less active catalysts in hydrosilylation reactions than corresponding iron carbonyl complexes, despite their higher Lewis basicity. Addition of one equivalent of GaCl3 to the adducts 46, 66 und 76 resulted in chloride abstraction reactions to afford the cationic and dimeric complexes 104-106. Here, two [(Me3P)2(OC)3M-GaCl2]+ units are bridged by Ga-Cl interactions. By contrast, treatment of 46, 66 und 76 with Na[BArCl4] (101) did not result in chloride abstraction reactions. Instead, the dimeric complexes 107-109 were isolated, in which two GaCl3 adducts are connected by two sodium cations.
6

Novel manganese- and molybdenum-based photoactivatable CO-releasing molecules: synthesis and biological activity / Neue Mangan- und Molybdän-basierte CO-releasing molecules: Synthese und biologische Aktivität

Nagel, Christoph January 2015 (has links) (PDF)
Since its discovery as a small signaling molecule in the human body, researchers have tried to utilize the beneficial cytoprotective properties of carbon monoxide in therapeutic applications. Initial work focused on the controlled direct application of CO gas. However, to circumvent the disadvantages of this method such as requirement for special equipment, hospitalization of the patient and the risk of overdosing, metal-carbonyl complexes were developed as CO-releasing molecules (CORMs) which are able to deliver CO in a tissue-specific manner. However, upon the release of CO from the metal coordination sphere, complex fragments termed inactivated CORMs (iCORMs) with free coordination sites remain which can undergo nonspecific follow-up reactions under physiological conditions. Thus, the first aim of the present thesis was the coordination of tetradentate ligands such as tris(2-pyridylmethyl)amine (tpa), bis(2-pyridylmethyl)(2-quinolylmethyl)amine (bpqa), bis(2-quinolylmethyl)(2-pyridylmethyl)amine (bqpa) and tris(2-quinolylmethyl) amine (tmqa) in a tridentate facial manner to a fac-Mn(CO)3 moiety previously established as a photoactivatable CO-releasing molecule (PhotoCORM). The desired coordination of the pedant donor group upon photolytic CO release at 365 nm was demonstrated by UV/Vis-, IR- und 1H NMR experiments and verified by DFT calculations. All complexes of the series showed long-term dark stability in phosphate-buffered saline (PBS), but released between two and three equivalents of carbon monoxide with half-lives of around 5-10 minutes upon illumination at 365 nm. Although the photolytic properties of the complexes were quite similar besides the differences in type of hetereoaromatic ligands, the determination of the logP values showed an increase of lipophilicity with the number of quinoline groups, which might enable tissue-specific uptake. A significant cellular manganese uptake as well as the binding of CO released upon photolysis to the cytochrome c oxidases in E. coli cells was demonstrated for [Mn(CO)3(tpa)]+. Furthermore, this complex exhibited photoinduced bactericidal activity when the cells were grown in succinate-containing medium and thus unable to change their metabolism to mixed acid fermentation. In the second part of the project, the hexadentate ligand 1,4,7-tris(2-pyridylmethyl)-1,4,7-triazacyclononane (py3tacn) was coordinated to a facial Mn(CO)3 moiety. The resulting [Mn(CO)3(py3tacn-3N)]+ complex has one pedant donor group per labile carbonyl ligand and thus is a significant improvement over the 1st generation tpa-complexes. The metal-coligand inactivated CORM (iCORM) fragment expected to be generated upon complete photolytic CO release, [Mn(py3tacn-6N)]2+, was synthesized independently and will serve as a well-defined negative control in upcoming biological tests. The corresponding CORM has long-term dark stability in pure dimethylsulfoxide or phosphate-buffered myoglobin solution, with three equivalents of CO released with a half-life of 22 minutes upon illumination at 412 nm. The photolysis was also followed by IR spectroscopy and the intermediates, in line with a stepwise release of carbon monoxide, and occupation of vacated sites by the pedant pyridine group were verified by DFT calculations. Due to possible tissue damage by energy-rich light and the inverse correlation of tissue penetration depth and illumination wavelength, the absorption maxima of PhotoCORMs should ideally be in the phototherapeutic window between 600 and 1200 nm. Thus, in the third part of this work, a series of heterobinuclear Mn(CO)3/Ru(bpy)2 PhotoCORMs was prepared to shift the absorption of these compounds into the red region of the UV/Vis spectrum. For the synthesis of such Mn(I)/Ru(II) complexes, the bridging ligands 2,3-di(2-pyridyl)quinoxaline (dpx) and 3-(pyridin-2-yl)-1,2,4-triazine[5,6-f]-1,10-phenanthroline (pytp) were prepared and the two binding pockets subsequently filled with a Ru(bpy)2 and a fac-Mn(CO)3 moiety. The resulting two heterobinuclear metal complexes [Ru(bpy)2(dpx)MnBr(CO)3]2+ and [Ru(bpy)2(pytp)MnBr(CO)3]2+ as well as [Ru(etx)(tbx)MnBr(CO)3]2+ with etx = ethyl(2,2':6',2''-terpyridine)-4'-carboxylate and tbx = N-((2,2’:6’,2’’-terpyridin)-4’-yl)2,2’-bipyridine-5-carboxamide which was prepared by a metal precursor provided by the group of Prof. Dr. Katja Heinze showed a significant shift of the main absorption bands to higher wavelengths as well as two times higher extinction coefficients than the analogous mononuclear Mn(I) compounds. However, both the Mn(I)/Ru(II) and Mn(I) complexes had a reduced stability in phosphate-buffered myoglobin solution even in the absence of light. The efficiency of the CO-release from [Ru(etx)(tbx)MnBr(CO)3]2+ and [Ru(bpy)2(dpx)MnBr(CO)3]2+ could be controlled by proper choice of the excitation wavelength. A change from 468 to 525 nm or even 660 nm led to a decrease of the number of CO equivalents released from two to one and an elongation of the half-lives. Finally, since nitric oxide also serves as a small messenger molecule in the human body with its signaling pathways interacting with those of CO, a mixed-ligand CO/NO metal complex was sought. [Mo(CO)2(NO)(iPr3tacn)]+ with iPr3tacn = 1,4,7-triisopropyl-1,4,7-triazacyclonane was selected from the literature and its molecular structure determined by single crystal diffraction, demonstrating the presence of an NO+ ligand in the coordination sphere as indicated by a MO-N-O angle close to 180°. Photolysis of [Mo(CO)2(NO)(iPr3tacn)]+ required high-energy UV light, which prevented a quantification of the CO release due to photolytic decomposition of the myoglobin. However, solution IR experiments showed that the complex lost the two carbon monoxide ligands upon illumination at 254 nm while the NO remained tightly bound to the metal. The structures observed of the intermediates were also verified by DFT calculations. In conclusion, in this project, four different classes of novel transition metal-based photoactivatable CO-releasing molecules (PhotoCORMs) were prepared and studied. The first group incorporated one additional free donor group per LMn(CO)3 moiety but varied in the number of coordinated pyridyl and quinolinyl groups which allows the control of the lipophilicity of these compounds. As an extension of this concept, the second series incorporated one free donor group per labile carbonyl ligand which gives rise to well-defined photolysis products that can be independently prepared and assayed. The third class was based on a Ru(II) photosensitizer unit connected to a MnBr(CO)3 PhotoCORM moiety. This shifts the absorption maximum from 500 nm to about 585 nm in [Ru(bpy)2(dpx)MnBr(CO)3]2+. Finally, a first mixed-ligand CO/NO carrier molecule was evaluated for its photolytic behavior. However, while the carbonyl ligands were photolabile at low excitation wavelengths, release of the NO ligand was not observed under the conditions studied. In a next step, detailed studies on the bioactivity of the different classes of PhotoCORMs need to be carried out with partner groups from biochemistry to fully explore their biomedical potential. / Seit der Entdeckung als von Kohlenstoffmonoxid small signaling molecule im menschlichen Körper stehen seine zellschützenden Eigenschaften im Interesse der Forschung, die für therapeutische Anwendungen nutzbar gemacht werden könnten. Anfangs lag hierbei der Fokus auf einer kontrollierten Verabreichung von gasförmigem Kohlenstoffmonoxid. Um die Nachteile dieser Methode, wie beispielsweise spezielle klinische Ausrüstung sowie das Risiko einer Überdosierung zu umgehen wurden Metallkomplexe mit CO-Liganden als CO-releasing molecules (CORMs) entwickelt, welche in der Lage sind Kohlenstoffmonoxid gewebespezifisch im Körper abzugeben. Durch die Freisetzung von CO aus der Koordinationssphäre eines Metallzentrums entstehen jedoch auch Komplexfragmente, sogenannte inactivated CORMs (iCORMs), welche unter physiologischen Bedingungen unbekannte Folgereaktionen eingehen können. Deshalb bestand das erste Ziel der vorliegenden Doktorarbeit darin, die tetradentaten Liganden Tris(2-pyridylmethyl)amin (tpa), Bis(2-pyridylmethyl)(2-quinolylmethyl)amin (bpqa), Bis(2-quinolyl-methyl)(2-pyridylmethyl)amin (bqpa) und Tris(2-quinolylmethyl)amin (tmqa) an eine faciale Mn(CO)3 Einheit zu koordinieren, deren Komplexe dann als photoactivatable CO-releasing molecules (PhotoCORM) fungieren sollten. Die Koordination der zusätzlichen Donorgruppe im Zuge der photolytischen CO Freisetzung wurde am Beispiel von [Mn(CO)3(tpa)]+ durch UV/Vis-, IR- und 1H NMR-Experimente gezeigt und durch DFT-Rechnungen untermauert. Alle Verbindungen der Serie zeigten in Phosphat-Puffer eine hohe Stabilität im Dunkeln. Durch Photoaktivierung bei einer Wellenlänge von 365 nm konnten aus den Komplexen zwei bis drei Äquivalente CO mit einer Halbwertszeit um 10 Minuten freigesetzt werden. Obwohl die photolytischen Eigenschaften der Komplexe sehr ähnlich waren, steigt die Lipophilie angegeben durch den logP-Wert mit steigender Anzahl der im Komplex enthaltenen Quinolin-Gruppen an, was die Gewebeaufnahme erleichtern sollte. Für [Mn(CO)3(tpa)]+ konnte ein deutlicher Anstieg der intrazellulären Mangankonzentration sowie die Bindung von freigesetztem CO an die Cytochrom c-Oxidasen in E. coli beobachtet werden. Auch zeigte diese Verbindung eine photoinduzierte Toxizität gegenüber diesen Bakterienkulturen, solange diese in Succinat-haltigem Nährmedium gezüchtet wurden und somit nicht in der Lage waren ihren Stoffwechsel auf die „mixed acid fermentation“ umzustellen. Im zweiten Teil der Arbeit sollte dann der hexadentate Ligand 1,4,7-Tris(2-pyridylmethyl)-1,4,7-triazacyclonane (py3tacn) an eine faciale Mn(CO)3-Einheit koordiniert werden. Der resultierende [Mn(CO)3(py3tacn-3N)]+ Komplex verfügt über eine freie Donorgruppe für jeden Kohlenstoffmonoxid-Liganden. Das Metall-Coligand-Fragment, [Mn(py3tacn-6N)]2+, welches als photolytisches Endprodukt erwartet wird, wurde über einen separaten Syntheseweg hergestellt und wird als Negativkontrolle in kommenden biologischen Testreihen eingesetzt werden. Untersuchungen zur CO-Freisetzung aus [Mn(CO)3(py3tacn-3N)]+ zeigten, dass die Verbindung sowohl in Dimethylsulfoxid als auch in gepuffertem Myoglobin im Dunkeln lange Zeit stabil ist. Bei Belichtung mit 412 nm können aus dem Komplex etwa drei Äquivalente CO mit einer Halbwertszeit von 22 Minuten freisetzt werden. Der Photolyseprozess wurde auch mittels IR-Spektroskopie verfolgt und die Zwischenstufen, welche Hinweis auf eine stufenweise Abgabe der CO-Liganden wie auch die Besetzung der freien Koordinationsstellen durch die freien Pyridingruppen gaben, durch DFT Rechnungen belegt. Aufgrund der Möglichkeit von Gewebeschädigungen durch kurzwelliges UV-Licht und den inversen Zusammenhang von Gewebeeindringtiefe und Belichtungswellenlänge, sollte das Absorptionsmaximum eines PhotoCORMs idealerweise im phototherapeutischen Fenster zwischen 600 und 1200 nm liegen. Deshalb wurden im dritten Teil dieser Arbeit hetereobinukleare Mn(CO)3/Ru(bpy)2 PhotoCORMs hergestellt, um die Absorption der Verbindungen in den roten Bereich des sichtbaren Spektrums zu verschieben. Für die Synthese der Mn(I)/Ru(II) PhotoCORMs wurden 2,3-Di(2-pyridyl)quinoxalin (dpx) und 3-(pyridin-2-yl)-1,2,4-triazin[5,6-f]-1,10-phenanthrolin (pytp) als verbrückende Liganden verwendet, wobei zunächst eine Bindungstasche mit Ru(bpy)2 und anschließend die zweite mit Mn(CO)3 gefüllt wurden. Die zwei resultierenden hetereobinukleare Metallkomplexe [Ru(bpy)2(dpx)MnBr(CO)3]2+ und [Ru(bpy)2(pytp)MnBr(CO)3]2+ sowie [Ru(etx)(tbx)MnBr(CO)3]2+, mit etx = Ethyl(2,2':6',2''-terpyridin)-4'-carboxylat und tbx = N-((2,2’:6’,2’’-Terpyridin)-4’-yl)2,2’-bipyridin-5-carboxamid, welcher aus einer Ruthenium-Vorstufe aus der Arbeitsgruppe von Prof. Dr. Katja Heinze synthetisiert wurde zeigten eine deutliche Verschiebung der intensivsten Absorptionsbande zu höheren Wellenlängen und eine Verdopplung der Extinktionskoeffizienten im Vergleich zu den analogen mononuklearen Mn(I)-Verbindungen. Jedoch konnte sowohl für die Mn(I)/Ru(II)- als auch für die Mn(I)-Komplexe selbst unter Lichtausschluss eine Zersetzung in gepuffertem Myoglobin festgestellt werden. Die Effizienz der CO-Freisetzung aus [Ru(etx)(tbx)MnBr(CO)3]2+ und [Ru(bpy)2(dpx)MnBr(CO)3]2+ lässt sich durch die Wahl einer geeigneten Anregungswellenlänge kontrollieren. Durch den Wechsel von 468 zu 525 nm oder sogar 660 nm wurde die Anzahl der freigesetzten CO-Äquivalente von zwei auf eins reduziert. Auch konnte eine Verlängerung der Halbwertszeiten festgestellt werden. Da Stickstoffmonoxid ebenfalls als small messenger molecule im menschlichen Körper bekannt ist, dessen Signalwege mit denen von CO interagieren, wurde ein gemischter CO/NO-Metallkomplex gesucht. [Mo(CO)2(NO)(iPr3tacn)]+ mit iPr3tacn = 1,4,7-triisopropyl-1,4,7-triazacyclonan wurde aus der Literatur ausgewählt und synthetisiert. Die molekulare Struktur der Verbindung konnte erstmals durch Röntgenbeugung am Einkristall aufgeklärt werden und enthält mit einem Mo-N-O Winkel von 180° das Stickstoffmonoxids als NO+-Liganden. Das energiereiche UV-Licht, welches zur Photolyse von [Mo(CO)2(NO)(iPr3tacn)]+ benötigt wurde, führte unter den Bedingungen des Myoglobin-Assay jedoch zu einer Zersetzung des Proteins. Durch Photolyse-Experimente in Acetonitril, welche mit IR-Spektroskopie verfolgt wurden, konnte jedoch die Freisetzung der beiden CO-Liganden durch Belichtung mit 254 nm beobachtet werden während der Nitrosyl-Ligand an das Metallzentrum gebunden blieb. Die gefundenen Photolyseprodukte konnten auch mittels DFT-Rechnungen identifiziert werden. Zusammengefasst wurden im Rahmen dieser Doktorarbeit vier verschiedene Klassen von übergangsmetallbasierten photoactivatable CO-releasing molecules (PhotoCORMs) hergestellt und untersucht. Die erste Gruppe von Molekülen verfügt über eine zusätzliche freie Donorgruppe pro fac-Mn(CO)3-Einheit, variiert aber in der Anzahl der koordinierten Pyridyl- und Quinolinyl-Einheiten, wodurch die Lipophilie der Verbindungen eingestellt werden kann. Die Verbindungen der zweiten Generation beinhalten eine freie Donorgruppe pro labilen Carbonyl-Liganden. Dies führt zu wohldefinierten photolytischen Endprodukten, welche auch separat hergestellt und getestet werden können. Die dritte Klasse basiert auf Ru(II)-Photosensitizern, die an eine MnBr(CO)3-PhotoCORM-Einheit angebunden wurden. Dies hat im Fall von [Ru(bpy)2(dpx)MnBr(CO)3]2+ eine Verschiebung des Absorptionsmaximums von 500 nm zu 585 nm zur Folge. Schließlich konnte ein gemischtes CO/NO-Trägermolekül erstmals auf seine photolytischen Eigenschaften untersucht werden. Während beide CO-Liganden in[Mo(CO)2(NO)(iPr3tacn)]+ labil waren, konnte eine Freisetzung des NO-Liganden unter den vorliegenden Bedingungen nicht beobachtet werden. In der Weiterführung dieses Projekts sollten detaillierte Studien zur biologischen Aktivität der verschiedenen PhotoCORMs durchgeführt werden um das volle biomedizinische Potential dieser Verbindungen zu ermitteln.
7

Über molekulare Grundzustandskontrolle durch modulierte Femtosekundenpulse im mittleren Infrarot

Witte, Thomas. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--München.
8

Molekulare Dissoziation im elektronischen Grundzustand induziert durch Femtosekundenpulse im mittleren Infrarot

Windhorn, Lars. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--München.
9

Metalltricarbonyl-basierte CO-releasing molecules (CORMs): Variation der Freisetzungskinetik und Biokonjugation / Metal tricarbonyl-based CO-releasing molecules (CORMs): Bioconjugation and modulation of CO-release kinetics

Roth, Patrick January 2021 (has links) (PDF)
Kohlenstoffmonoxid ist ein wichtiges kleines Signalmolekül das im menschlichen Körper durch die enzymatische Wirkung von Häm-Oxygenase (HO) auf Häm produziert wird. Für eine thera-peutische Anwendung werden Metallcarbonyl-Komplexe als CO-releasing molecules (CORMs) untersucht, die eine kontrollierte Freisetzung in biologischen Zielstrukturen erlauben. Dafür wird entweder die Ligandenperipherie ("drug sphere") modifiziert oder die CORMs an bio-molekulare Trägersysteme konjugiert. Im Rahmen dieser Arbeit stand dabei die lichtinduzierte Freisetzung von Kohlenstoffmonoxid aus Mangan(I)tricarbonyl-Komplexen im Vordergrund. Die oktaedrische Koordinationssphäre des Metallzentrums wurde dabei durch verschiedene faciale tridentate Liganden komplettiert, welche außerdem eine einfache und modulare Verknüpfung mit biologischen Träger-molekülen ermöglichen sollten. Als Chelatoren wurden Derivate von N,N-Bis(pyridin-2-ylmethyl)amin (bpa) ausgewählt, in denen das zentrale Stickstoffatom mit Alkylaminen unterschiedlicher Kettenlänge funktionalisiert ist, welche über Amid-Bindungen mit Carboxylat-modifizierten Trägermolekülen verknüpft werden können. Diesen bpa-Liganden sollte ein neuartiges Ligandensystem auf der Basis von N-(Phenanthridin-6-ylmethyl)-N-(chinolin-2-ylmethyl)ethan-1,2-diamin (pqen) gegenübergestellt werden, in denen die Phenanthridin-Gruppe interessante photophysikalische und photochemische Eigenschaften erwarten lässt. Die CO-releasing molecules sollten zudem mit den isostrukturellen Rhenium(I)tricarbonyl-Komplexen verglichen werden, die als Marker für die Fluoreszenz-mikroskopie dienen. / In many organisms, carbon monoxide is generated in a controlled fashion by the degradation of heme by heme oxygenase (HO) enzymes. This small signaling molecule is involved in the control of blood pressure and possess anti-inflammatory, anti-apoptotic, and cytoprotective properties. However, a key issue is the tissue-specific delivery of carbon monoxide without concomitant formation of elevated toxic levels of CO in blood. In that context, metal carbonyl complexes show great potential for a safe CO delivery in a spatially and temporally well-controlled manner. Such CO-releasing molecules (CORMs) are composed of an inner "CORM sphere", which determines the CO release kinetics, and an outer "drug sphere", which controls bioavailability and tissue-specific uptake. In the context of this work, a series of photoactivatable CO-releasing molecules based on manganese(I) tricarbonyl groups was synthesized. In these systems, the octahedral coordination sphere of the metal center is completed by a variety of facial tridentate N^N^N ligands. Derivatives of bis(2-pyridylmethyl)amine (bpa) were selected as the chelator, in which the central tertiary nitrogen atom is functionalized with alkylamines of different chain lengths that can be linked to carboxylate-modified biological carrier molecules via amide bonds. The series of bpa ligands was contrasted with a novel ligand system based on N-(phenanthridin-6-ylmethyl)-N-(quinolin-2-ylmethyl)ethane-1,2-diamine (pqen), in which the phenanthridine group possesses interesting photophysical and photochemical properties. The series of CO-releasing molecules was complemented with the isostructural rhenium(I) tricarbonyl complexes, which might serve as markers for fluorescence microscopy.

Page generated in 0.0492 seconds