Spelling suggestions: "subject:"etallic environment"" "subject:"ametallic environment""
1 |
Design of an Antenna for a Wireless Sensor Network for TrainsHinnemo, Malkolm January 2011 (has links)
An antenna for a wireless sensor network for trains is designed and built. The network will monitor temperature and vibrations of the wheel bearings on the train wagons. Doing this will allow for an earlier detection of damaged wheels, which will ease planning of maintenance and reduce wear on the rails considerably. The requirement of the system is that it is to be installed without any cables attached to the sensor nodes. This calls for wireless communication, and that for that antennas are needed.A train is a difficult environment to transmit electromagnetic (EM) waves in. It is full of metal and EM-waves cannot pass through a conducting material. Having much metal in its vicinity also affects the function of the antenna. This needs to be taken into consideration when making the design.The constructed antenna is a small dual-layer patch antenna. Dual layer means that it is constructed out of two sheets known as substrates of isolating material with different characteristics. The lower one of these substrates is made in such a way that integration with a circuit board is possible. Such integration would reduce the production cost considerably. The antenna is designed for direct placement on a conducting surface. This surface could be part of the train. It uses the surrounding metal as a ground plane in order to reduce its size. The result is a small patch antenna with good radiation qualities in metallic surroundings. The longest side is 18.35 mm, equaling 14.9 % of the wavelength that the antenna is designed for. / WISENET
|
2 |
Conception de systèmes antennaires MIMO multi-standards LTE pour les nœuds relais / Design of LTE MIMO antenna systems dedicated to relay nodesSadaoui, Lamia 13 December 2018 (has links)
Pour déployer la quatrième génération de téléphonie 4G/LTE ou « LTE advanced », les opérateurs mobiles sont confrontés à de fortes contraintes : d’une part assurer une bonne couverture géographique mais aussi une excellente qualité de service. Ceci nécessite une ingénierie du réseau qui dépasse largement ce qui a été mis en place pour les réseaux GSM ou 3G. L’industrie des télécoms a créé pour cela le concept de « small cells » ou petites cellules qui viennent en renfort des « macrocells » ou grosses cellules. Cette thèse cherche à apporter une solution à cette problématique à travers notamment le développement d'antennes pour « smart cells ». Cette étude, supportée par le projet FUI NETCOM, doit permettre aux opérateurs d’étendre la couverture et la capacité de leurs réseaux à moindre coût tout en préservant la qualité de service. Pour cela, l’objectif plus précis de cette thèse est de concevoir un système multi-antennaire multistandard MIMO (Multiple-Input Multiple-Output) dédié à des noeuds relais pour le déploiement de la quatrième génération de téléphonie LTE. Cette conception doit être compatible avec 3 bandes de fréquences du LTE : (700-900 MHz) pour les bandes LTE 700 et LTE 800, (1710-1880 MHz) pour les bandes GSM 1800 / LTE 1800 et la dernière (2500-2690 MHz) pour le LTE 2600. Pour cela, nous avons étudié tout d’abord un système à 4 accès mono-bande, en nous concentrant uniquement sur la bande basse de 700 à 900 MHz. Dans une seconde étude, nous avons cherché à couvrir les deux autres bandes supérieures en nous servant d’éléments parasites pour constituer un système MIMO à 4 accès tri-bande. Nous avons ensuite étudié l’influence de l’environnement proche du système antennaire, avec la présence d’un radiateur métallique. Un problème important et fréquent dans les systèmes multi-antennes étant le couplage, nous avons également étudié et réalisé une technique de découplage. Celle-ci servira à isoler les éléments rayonnants à espacement réduit, conçus pour nos trois bandes LTE. / To deploy the fourth generation called 4G/LTE or "LTE advanced", mobile operators face strong constraints: they must ensure a good geographic coverage but also an excellent quality of service. This requires new methods that go far beyond what has been implemented for GSM or 3G networks. The telecom industry has created the concept of "small cells" that reinforce the "macrocells" deployed by the operators. This thesis tries to provide a solution to this problem and more particularly through the development of antennas for a product called "smart cell". This study, supported by the FUI project NETCOM, should enable mobile operators to extend the coverage and capacity of their networks at a lower cost while maintaining a good quality of service. To do that, the aim of this thesis more particularly is the design of a multi-band multi-antennas MIMO system (Multiple-Input Multiple-Output) dedicated to relay nodes for the deployment of the fourth generation 4G/LTE or "LTE advanced". The antenna design considers the coverage of the three LTE operating frequency bands and must be compatible with them. The (700-900 MHz) frequency band is used for the LTE 700 and LTE 800 bands, (1710-1880 MHz) for the GSM 1800/LTE 1800 bands and the last (2500-2690 MHz) for the LTE 2600 bands. In our first study, a reference system with 4 access was studied in simulation and measured, for only the low band 700-900 MHz. In a second study, we tried to cover the other two higher bands to have a tri-band system using the parasitic elements to get a three-band MIMO system with 4 access. We studied then, the influence of the environment close to the antenna system, with the presence of a metallic radiator. As we often encounter a frequent problem in multi-antenna systems which is the coupling problem between the different access of a multi antenna system, so we have studied and realized a decoupling technique. This technique was used to enhance the isolation between the different access.
|
Page generated in 0.095 seconds