Spelling suggestions: "subject:"etallic oxides. mesoporous materials."" "subject:"etallic oxides. mesoporouse materials.""
1 |
Mesoporous crystalline metal oxides /Yue, Wenbo. January 2009 (has links)
Thesis (Ph.D.) - University of St Andrews, June 2009. / Restricted until 5th June 2011.
|
2 |
Mesoporous crystalline metal oxidesYue, Wenbo January 2009 (has links)
Mesoporous monocrystalline metal oxides (e.g. Co₃O₄, Cr₂O₃, NiO, CeO₂, In₂O₃ and WO₃) templated by SBA-15 or KIT-6 were synthesised successfully by using a simple solvent-free approach, the so-called solid-liquid method, which was the principal development of methodology in this project. A metal-containing precursor, whose melting point is lower than its decomposition temperature, was directly ground with a mesoporous silica and impregnated into the pores of the silica template after melting when the temperature was increased above its melting point. The liquid precursor then decomposed to form metal oxide inside the silica pores when the temperature was further increased to its decomposition temperature and crystallization temperature of the oxide. The structural characterisations of these porous metal oxides were performed by using TEM, XRD and N₂ adsorption/desorption techniques. The solid-liquid method is convenient and solvent-free. On the other hand, its limitation is that the precursor must have a melting point lower than its decomposition temperature. A novel porous single crystal of rutile TiO₂ as well as anatase nanocrystal-silica composite was also synthesised successfully for the first time using SBA-15 and KIT-6 as templates. These materials have interesting properties of proton conductivity, Li insertion and photoactivity. Likewise, the characterisation of porous TiO₂ was achieved by using XRD, TEM, SAED and N₂ adsorption/desorption. The residual SiO₂ component in porous TiO₂ was detected by using the EDX technique. Porous cubic metal oxides of Co₃O₄, NiO, CeO₂ and In₂O₃ were prepared using novel mesoporous silicas FDU-12 and SBA-16, which contain spherical nanocavities linked together by smaller windows. These porous materials have larger surface areas than those templated by SBA-15 and KIT-6. Unlike the cubic metal oxides, syntheses of porous crystals of non-cubic metal oxides such as rhombohedral Cr₂O₃, Fe₂O₃ and hexagonal TiO₂, WO₃ were not successful when using cage-containing mesoporous silicas as templates. The three-dimensional arrangements of nanospheres in porous crystals of cubic oxides mentioned above were observed by TEM and the corresponding larger surface areas were confirmed by N₂ adsorption/desorption technique. Additionally, fabrication of porous crystals of other metal oxides such as MgO, ZnO and ZrO₂ were unsuccessful by using either mesoporous silicas or mesoporous carbons as templates. Possible drawbacks of using mesoporous silica and carbon as templates were discussed.
|
Page generated in 0.1054 seconds