• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • Tagged with
  • 8
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Metal-binding P-loop GTPases: E. coli YeiR and M. thermoacetica AcsF

Flood, Jessica 23 November 2011 (has links)
Organisms express metal-binding proteins in order to deal with essential metal ions that can be potentially toxic. A common trend of bacterial metal homeostasis pathways is the presence of a GTPase, and several of these proteins are members of the G3E family of P-loop GTPases. In this work we focused on E. coli YeiR, member of the under-characterized COG0523 subfamily, and on M. thermoacetica AcsF. The in vitro metal-binding properties of isolated YeiR are presented. The protein binds Ni2+ and Zn2+ with low micromolar affinity, and oligomerizes in the presence of metal. The GTPase activity of YeiR is similar to that measured for other members of the group and is enhanced by Zn2+. In the case of AcsF, it was not possible to establish concluding evidence that the protein binds metal. This study helps shed light upon members of the under-characterized subfamily of G3E P-loop GTPases.
2

Characterization of Metal-binding P-loop GTPases: E. coli YeiR and M. thermoacetica AcsF

Flood, Jessica 23 November 2011 (has links)
Organisms express metal-binding proteins in order to deal with essential metal ions that can be potentially toxic. A common trend of bacterial metal homeostasis pathways is the presence of a GTPase, and several of these proteins are members of the G3E family of P-loop GTPases. In this work we focused on E. coli YeiR, member of the under-characterized COG0523 subfamily, and on M. thermoacetica AcsF. The in vitro metal-binding properties of isolated YeiR are presented. The protein binds Ni2+ and Zn2+ with low micromolar affinity, and oligomerizes in the presence of metal. The GTPase activity of YeiR is similar to that measured for other members of the group and is enhanced by Zn2+. In the case of AcsF, it was not possible to establish concluding evidence that the protein binds metal. This study helps shed light upon members of the under-characterized subfamily of G3E P-loop GTPases.
3

Identification and Characterization of Zn(II)-responsive Genes and Proteins in <i>E. coli</i>

Easton, James Allen 13 September 2007 (has links)
No description available.
4

SlyD, A Ni(II) Metallochaperone for [NiFe]-hydrogenase Biosynthesis in Escherichia coli

Kaluarachchi, Harini 10 January 2012 (has links)
SlyD is a protein involved in [NiFe]-hydrogenase enzyme maturation and, together with HypB and HypA proteins, contributes to the nickel delivery step. To understand the molecular details of this in vivo function, the nickel-binding activity of SlyD was investigated in vitro. SlyD is a monomeric protein that can chelate up to 7 nickel ions with an affinity in the sub-nanomolar range. By truncation and mutagenesis studies we show that the unique C-terminal metal-binding domain of this protein is required for Ni(II) binding and that the protein coordinates this metal non-cooperatively. This activity of SlyD supports the proposed in vivo role of SlyD in nickel homeostasis. In addition to nickel, SlyD can bind a variety of other types of transition metals. Therefore it was feasible that the protein contributes to homeostasis of metals other than nickel. To test this hypothesis, the metal selectivity of the protein was examined. The preference of SlyD for the metals examined could be ordered as follows, Mn(II), Fe(II) < Co(II) < Ni(II) ~ Zn(II) << Cu(I) indicating that the affinity of SlyD for the different metals follows the Irving-Williams series of metal-complex stabilities. Although the protein is unable to overcome the large thermodynamic preference in vitro for Cu(I) and exclude Zn(II) chelation, in vivo studies suggest a Ni(II)-specific function for the protein. To understand the function of SlyD as a metallochaperone, its interaction with HypB was investigated. This investigation revealed that SlyD plays a role in Ni(II) storage in E. coli and can function as a Ni(II)-donor to HypB. This study also revealed that SlyD can modulate the metal-binding as well as the GTPase activities of HypB. Based on the experimental data, a role for the HypB-SlyD complex in [NiFe]-hydrogenase biosynthesis is presented.
5

SlyD, A Ni(II) Metallochaperone for [NiFe]-hydrogenase Biosynthesis in Escherichia coli

Kaluarachchi, Harini 10 January 2012 (has links)
SlyD is a protein involved in [NiFe]-hydrogenase enzyme maturation and, together with HypB and HypA proteins, contributes to the nickel delivery step. To understand the molecular details of this in vivo function, the nickel-binding activity of SlyD was investigated in vitro. SlyD is a monomeric protein that can chelate up to 7 nickel ions with an affinity in the sub-nanomolar range. By truncation and mutagenesis studies we show that the unique C-terminal metal-binding domain of this protein is required for Ni(II) binding and that the protein coordinates this metal non-cooperatively. This activity of SlyD supports the proposed in vivo role of SlyD in nickel homeostasis. In addition to nickel, SlyD can bind a variety of other types of transition metals. Therefore it was feasible that the protein contributes to homeostasis of metals other than nickel. To test this hypothesis, the metal selectivity of the protein was examined. The preference of SlyD for the metals examined could be ordered as follows, Mn(II), Fe(II) < Co(II) < Ni(II) ~ Zn(II) << Cu(I) indicating that the affinity of SlyD for the different metals follows the Irving-Williams series of metal-complex stabilities. Although the protein is unable to overcome the large thermodynamic preference in vitro for Cu(I) and exclude Zn(II) chelation, in vivo studies suggest a Ni(II)-specific function for the protein. To understand the function of SlyD as a metallochaperone, its interaction with HypB was investigated. This investigation revealed that SlyD plays a role in Ni(II) storage in E. coli and can function as a Ni(II)-donor to HypB. This study also revealed that SlyD can modulate the metal-binding as well as the GTPase activities of HypB. Based on the experimental data, a role for the HypB-SlyD complex in [NiFe]-hydrogenase biosynthesis is presented.
6

Structural and Biochemical Studies of the Metal Binding Protein CusF and its Role in Escherichia coli Copper Homeostasis

Loftin, Isabell January 2008 (has links)
Biometals such as copper, cobalt and zinc are essential to life. These transition metals are used as cofactors in many enzymes. Nonetheless, these metals cause deleterious effects if their intracellular concentration exceeds the cells' requirement. Prokaryotic organisms usually employ efflux systems to maintain metals in appropriate intracellular concentrations.The Cus system of Escherichia coli plays a crucial part in the copper homeostasis of the organism. This system is a tetrapartite efflux system, which includes an additional component compared to similar efflux systems. This fourth component is a small periplasmic protein, CusF. CusF is essential for full copper resistance, yet its role within the Cus system has not been characterized. It could potentially serve in the role of a metallochaperone or as a regulator to the Cus system.To gain insight into the molecular mechanism of resistance of this system, I have structurally and biochemically characterized CusF. Using X-ray crystallography I determined the CusF structure. CusF displays a novel fold for a copper binding protein. Through multiple sequence alignment and NMR chemical shift experiments, I proposed a metal binding site in CusF, which I confirmed through determination of the structure of CusF-Ag(I). CusF displays a novel coordination of Ag(I) and Cu(I) through a Met2His motif and a cation-pi interaction between the metal ion and a tryptophan sidechain. Furthermore, I have shown that CusF binds Cu(I) and Ag(I) specifically and tightly.I investigated the role of the tryptophan at the binding site to establish its effect on metal binding and function of CusF. I have shown through competitive binding assays, NMR studies and through collaborative EXAFS studies that the tryptophan plays an essential role in CusF metal handling. The affinity of CusF for Cu(I) is influenced by this residue. Moreover, the tryptophan also caps the binding site such that oxidation of the bound metal as well access to adventitious ligands is prevented. In summary, these findings show that the structure and metal site of CusF are unique and are specifically designed to perform the function of CusF as a metallochaperone to the Cus system.
7

Identification and characterization of Zn(II)-responsive genes and proteins in E. coli

Easton, James Allen. January 2007 (has links)
Thesis (Ph. D.)--Miami University, Dept. of Chemistry and Biochemistry, 2007. / Title from second page of PDF document. Includes bibliographical references.
8

Structure and function of iron-sulfer cluster biosynthesis proteins and the influence of oxygen ligation

Mansy, Sheref S. 24 November 2003 (has links)
No description available.

Page generated in 0.0586 seconds