• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 32
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 74
  • 37
  • 35
  • 33
  • 32
  • 28
  • 20
  • 20
  • 19
  • 17
  • 15
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The genesis of the Gayna River carbonate-hosted Zn-Pb deposit

Wallace, Sara Rose Bronwen. January 2009 (has links)
Thesis (M. Sc.)--University of Alberta, 2009. / Title from PDF file main screen (viewed on July 10, 2009). "A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science, Department of Earth and Atmospheric Sciences, University of Alberta." Includes bibliographical references.
12

A compiled geological, geochemical, and metallogenic study of a magmatic nickel-copper sulphide occurrence at the Cirque property, Nain Plutonic suite, Northern Labrador /

Dwyer, Berni Lori, January 2001 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 2001. / Bibliography: leaves 331-354. Also available online.
13

The paleoproterozoic metaplutonic suite of Voisey's Bay, Labrador : a geochemical, tectonic and metallogenic investigation /

Rawlings, Alana Maxine, January 2001 (has links)
Thesis (M.Sc)--Memorial University of Newfoundland, 2001. / Includes bibliographical references. Also available online.
14

The geology, geochemistry and metallogeny of the Tati Greenstone Belt, northeastern Botswana /

Tombale, Akolang Russia, January 1992 (has links)
Thesis (Ph.D.)--Memorial University of Newfoundland, 1994. / Typescript. Bibliography: leaves 343-375. Also available online.
15

An integrated study of magmatism, magmatic Ni-Cu sulphide mineralization and metallogeny in the Umiakoviarusek Lake Region, Labrador, Canada /

Piercey, Stephen John, January 1998 (has links)
Thesis (M. Sc.), Memorial University of Newfoundland, 1998. / Restricted until November 2000. Includes bibliographical references. Also available online.
16

The basal gabbro subdivision and associated magmatic nickel-copper sulphide mineralization of the Pants Lake intrusion, Labrador, Canada : a combined geological, petrological, geochemical, and metallogenic study /

Smith, Roderick L., January 2006 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 2006. / Includes bibliographical references. Also available online.
17

Geology of the Chukar Footwall Mine, Maggie Creek District, Carlin Trend, Nevada /

Ruiz Párraga, Juan Antonio. January 2007 (has links)
Thesis (M.S.)--University of Nevada, Reno, 2007. / "May, 2007." Geological maps on eleven folded leaves in pocket. Includes bibliographical references (leaves 143-154). Library also has microfilm. Ann Arbor, Mich. : ProQuest Information and Learning Company, [2008]. 1 microfilm reel ; 35 mm. Online version available on the World Wide Web.
18

Metallogenic evolution of the southern Appalachian Orogenic Belt and Mississippi Valley

Maassen, Larry W 03 April 2013 (has links)
Plate tectonic theory provides logical explanations for the major tectonic events in the eastern US during Paleozoic time. The details of these tectonic events are becoming more apparent with the accumulation of new data, especially radiometric age dates. When plate tectonic theory is applied to specific tectonic events for which there is no substantial evidence, such as intracontinental hotspot rifting environments and Precambrian subduction zones, the proposed models may become very speculative. A misconception concerning the geology of the central US is that this region is structurally stable. However, geologists are currently paying considerable attention to the interlocking network of faults that in a general way follow the 38th parallel of latitude from west-central Virginia into Central Missouri (and may extend farther to the east and west). Most of the displacement along this zone occurred during the Precambrian, but different parts have moved during several periods of post-Precambrian time. In the basement the lineament may be a wide fracture zone that extends deep into the crust and is thus responsible for the magmatic iron deposits of the Southeast Missouri and may be either directly or indirectly responsible for the localization of the Mississippi Valley type deposits that occur sporadically along its length. Whether or not plate-tectonic processes operated during the Precambrian is open to speculation and the lineament may or may not be related to plate tectonic activity, but it is obvious that throughout time inherent zones of weakness are important in the localization of ore deposits. The occurrence of several major mineral districts at the intersections of the 38th parallel lineament with other major structural features, particularly in some uplifted areas and fault zone intersections, suggests that other similar structural uplifts and fault-zone intersections should be investigated for undiscovered new districts or extensions of known districts. Small uneconomic mineral occurrences along fault zones intersecting the lineament may merit further examination as they may be indications of undiscovered deposits at depth. The overall tectonic environment in the Appalachian region was an important control on the localization of massive sulfide, gold, titanium, and tungsten deposits. The deposits occur in clusters, either in Late Precambrian spreading centers and associated rift systems related to the breakup of proto-Pangea, or in Eocambrian and Devonian low-potassium tholeiitic volcanic and plutonic rocks associated with the volcanic island arc systems which developed during the closing of the Iapetus Ocean. Feiss and Hauck (1980) are confident that moderate sized (1-10 million ton) massive sulfide deposits are yet to be found at depth in these regions of the southern Appalachians, but large (greater than 20 million ton) massive sulfide deposits are unlikely to exist. The Mississippi Valley carbonate-hosted deposits of lead-zinc-baritefluorite, that occur to some extent throughout the Paleozoic section, and the Silurian "Clinton" iron ores owe their origin and distribution to normal sedimentary and diagenetic processes resulting from the transgressions of the epeiric seas. Others, such as the residual deposits of managnese iron, and aluminum, owe their existence to the afore mentioned processes, but must also have had subsequent exposure to the concentrating mechanism of weathering in a stable environment. The Mississippi Valley type occur primarily around paleo-basement highs and paleoshorelines; therefore, the formation of domes and arches within the continental interior during bathygenic episodes was a major factor controlling the localization of these deposits. These broad upwarps were preferential sites for reefal development and facies changes, and, during epeirogenic periods, these positive features have resulted in erosion and karsting of the the carbonate rocks by meteoric waters and have thus been prepared for mineralization. Deposits of this type are most common below a pre-Middle Ordovician unconformity and should be sought along major domes and arches, and along major lineaments. The association of Applachian type deposits with arches is indeterminate because a structure as subtle as an arch would be difficult to detect following overprinting by the deformation of the Alleghany orogeny; however, there is no reason to suspect that this type of positive feature did not play a role in their location. In conclusion, plate movements were a major control on the Paleozoic tectonic history of the eastern US and were also the primary control on the localization of the base metal, gold, tungsten, chromite, and titanium deposits of the southern Appalachians. However, important sedimentary and diagenetic deposits were localized primarily by arch, dome, and basin development during bathygenic episodes. Whether these submergent episodes are the result of plate motion or whether plate motion is indirectly related to submergent episodes, as suggested by Sloss and Speed (1974), remains a problem that needs to be investigated and debated further. / KMBT_363 / Adobe Acrobat 9.53 Paper Capture Plug-in
19

The Precambrian metallogeny of Kwazulu-Natal

Hira, Hethendra Gangaram January 1998 (has links)
The Precambrian rocks of KwaZulu-Natal comprise the Archaean granite-greenstone remnants of . the Kaapvaal craton and Late Archaean volcanics and sediments of the supracratonic Pongola Supergroup. These Archaean rocks have been intruded by numerous mafic/ultramafic complexes and voluminous granitoid intrusives of various ages. To the south, the basement rocks are represented by the Mid- to Late-Proterozoic Natal Metamorphic Province (NMP). The NMP comprises three discontinuity-bound tectonostratigraphic terranes. These are, from north to south, the Tugela, Mzumbe and Margate Terranes. The Tugela Terrane has been interpreted as an ophiolite suite that was thrust northwards onto the stable Archaean craton as four nappe structures. Continued thrusting resulted in the two southern terranes being thrust northwards over each other, resulting in numerous sinistral transcurrent shear zones and mylonite belts. The greenschist facies Tugela terrane has been intruded by mafic-ultramafic complexes, alpine serpentinites, plagiogranites and a number of alkaline to peralkaline granitoids. The Mzumbe and Margate Terranes comprise arc-related, felsic to mafic supracrustal gneisses and metasediments that were intruded by syn-, late- and post-tectonic granitoids. Mineralisation in the granite-greenstones consists of structurally-hosted lode-gold deposits. These deposits have many characteristics in common with lode-gold deposits found in other granitegreenstone terranes throughout the world. The Nondweni greenstones also contain volcanogenicrelated massive sulphide deposits. The Pongola Supergroup is host to lode-gold mineralisation and placer gold mineralisation. These placer deposits have been correlated with deposits found in the similarly-aged Witwatersrand Basin in an adjacent part of the craton. The metallogeny of the NMP can be described in relation to the various stages in the tectonic evolution of the belt. The initial, rifting and extension-related stage was characterised by arcrelated magmatism and volcanic arc activity. Alkali basalt magmatism due to hot-spot activity in the oceanic basin in which the Tugela Terrane initially accumulated, produced magmatic segregation deposits, while volcanic-arc activity is responsible for the submarine-exhalative massive sulphide mineralisation. All the mineralisation within the NMP is structurally-related. These thrusts and shear zones were developed during obduction and thrusting during the NMP event, and created the paths necessary for the migration of mineralising fluids. Alpine-type ophiolite deposits were also emplaced along these zones. Epigenetic, shear zone-hosted gold mineralisation occurs in the Tugela and Mzumbe Terranes. Mineralisation occurs within quartz veins and is also disseminated within the sheared host-rocks. The Mzumbe Terrane also contains small showings of massive sulphide deposits that were related to volcanogenic exhalative processes during the formation of this terrane. Potential for finding further mineralisation of this type appears to be good. The massive sulphide deposits formed early in the evolution of the belt, and were deformed and metamorphosed during the later accretionary processes. The southernmost Margate Terrane is characterised by a lack of metalliferous mineralisation, but hosts the extensive, and economically important, limestone deposits of the Marble Delta. The recently discovered spodumene-rich pegmatite deposits of this terrane may also be considered for exploitation. Post-collisional magmatism and metamorphism resulted in extensive rapakivi-type granite/charnockite plutons
20

METALLOGENETIC CONTROLS ON MIOCENE HIGH-SULPHIDATION EPITHERMAL GOLD MINERALIZATION, ALTO CHICAMA DISTRICT, LA LIBERTAD, NORTHERN PERÚ

Montgomery, Allan Trevor 05 April 2012 (has links)
The Alto Chicama district, Central Andean Cordillera Occidental, La Libertad, northern Perú, hosts the 14 M oz, Miocene Lagunas Norte high-sulphidation epithermal Au-(Ag) deposit (Latitude 7° 56ʹ30ʺ S; Longitude 78°14ʹ50ʺ W), in addition to several important, epithermal and mesothermal precious ± base-metal vein systems and porphyry Cu-Au-(Mo) deposits and prospects. The district is underlain by lower Oligocene-to-Middle Miocene, subaerial, Calipuy Supergroup volcanic rocks, unconformably overlying Upper Jurassic – Lower Cretaceous marine sedimentary strata affected by late Eocene-early Oligocene thin-skinned fold and thrust deformation. Mineralization at Lagunas Norte is largely hosted by intensely-folded Valanginian Chimú Formation quartz arenite, but extends into overlying, weakly-deformed, Lower Miocene dacitic volcaniclastic deposits. Fold- and thrust-related deformation at the deposit, and subsequent magmatic and hydrothermal activity, were localized along a long-lived, crustal-scale cross-strike discontinuity. Hydrothermal activity at Lagunas Norte was associated with local extension within an overall regional compressive regime. Ore formation occurred during the terminal stages of andesitic-to-dacitic magmatism in the deposit area, immediately following the sector collapse of an adjacent volcanic centre, and during eruption of late-stage peripheral dacitic domes. Intense advanced-argillic alteration occurred in at least two major pulses over a ~ 0.9 m.y. period, implying repeated magma influx in a shallow subjacent chamber. The ensuing Au-(Ag)-pyrite-enargite deposition resulted from mixing of magmatic vapour with oxidized groundwaters, a process stimulated by the contiguous incision of a steep-walled valley-pediment. The local volcanic rocks record a transition from “normal arc” to higher-pressure “adakitic” magmatism, initiated during ore deposition at Lagunas Norte, but exhibited by the entire Calipuy arc in northern Perú, and interpreted to reflect the destabilization of plagioclase and stabilization of garnet in inferred lower-crustal magmas. The progressive depletion of 18O and D in meteoric water recorded in late Oligocene-to-Late Miocene hypogene and supergene minerals is in permissive agreement with major uplift from ~ 1000 m to over 3000 m a.s.l. during hydrothermal activity. Hydrothermal activity and related ore deposition at Lagunas Norte unambiguously predated, by at least 2 m.y., the impingement of the aseismic Nazca Ridge at the Perú Trench and the ensuing flattening of the subducting slab / Thesis (Ph.D, Geological Sciences & Geological Engineering) -- Queen's University, 2012-04-05 11:09:14.751

Page generated in 0.1192 seconds