Spelling suggestions: "subject:"metallosupramolecular chemistry"" "subject:"metalosupramolecular chemistry""
1 |
Colossal Aromatic MoleculesFerguson, Jayne Louise January 2013 (has links)
This thesis describes the preparation of a series of compounds containing π-excessive, five-membered, heterocyclic rings with peripheral aryl substituents, designed to investigate their oxidative cyclodehydrogenation and/or photocyclisation to form curved, fused aromatic systems with a heterocyclic atom at the core of the compound. The ability of these compounds to undergo oxidative cyclodehydrogenation was investigated using a range of conditions, including the use of Lewis acidic transition metals, organic reagents and light as catalysts to carry out the desired carbon-carbon bond forming reactions. Two backbone linked 2,2’-biimidazole ligands were prepared to investigate their coordination chemistry with a range of different metal ions and counter ions.
Two families of model compounds, including ten previously unreported compounds, were prepared and subjected to various conditions for oxidative cyclodehydrogenation and photocyclisation resulting in the isolation of compounds with one carbon-carbon bond formed between the peripheral aryl rings in the same position on the heterocyclic ring, nineteen previously unreported compounds were isolated. Additionally, in one case oxidative cyclodehydrogenation resulted in the formation of two carbon-carbon bonds, producing a highly strained aromatic compound containing a heterocyclic ring. Photocyclisation of one family of compounds resulted in the formation of a different heterocyclic core dependent upon the substituent on the nitrogen atom. Five pentaarylpyrrole compounds, three of which were previously unreported, were also prepared after the exploration of various synthetic routes towards the pentaarylpyrrole motif. Photocyclisation also resulted in the formation of one carbon-carbon bond. The compounds resulting from oxidative cyclodehydrogenation and photocyclisation were characterised by NMR spectroscopy, UV/vis spectroscopy and fluorometry, where possible X-ray crystallography was also used.
The coordination chemistry of backbone linked 2,2’-biimidazole ligands to various metal ions could be controlled by the length of the backbone linker. The ethyl linked 2,2’-biimidazole ligand formed bridging and monodentate coordination compounds with various metal ions, the metallosupramolecular assemblies produced with silver ions could be controlled by the anion present. Discrete coordination complexes were usually formed, but in two cases metallopolymers were produced. The propyl linked 2,2’-biimidazole ligand formed exclusively discrete, chelating complexes with copper (II) metal ions. Eighteen coordination complexes were prepared during the course of this study characterized by X-ray crystallography, and NMR spectroscopy where appropriate.
|
2 |
Σχεδιασμός, σύνθεση και κρυσταλλική μηχανική συμπλόκων ενώσεων του Cu(II) με 2-φαινυλοϊμιδαζόλιο ως υποκαταστάτηΚίτος, Αλέξανδρος 19 July 2012 (has links)
Βασικός στόχος της παρούσης Διπλωματικής Εργασίας ήταν η μελέτη της κρυσταλλικής μηχανικής συμπλόκων ενώσεων του CuII με το 2-φαινυλοϊμιδαζόλιο ως υποκαταστάτη. Η κρυσταλλική μηχανική μπορεί να θεωρηθεί ως ο κλάδος της υπερμοριακής χημείας στη στερεά κατάσταση.
Η υπερμοριακή χημεία (supramolecular chemistry) είναι μια από τις πλέον δημοφιλείς και γρήγορα αναπτυσσόμενες περιοχές της πειραματικής χημείας. Χαρακτηρίζεται ως η χημεία των ασθενών διαμοριακών δυνάμεων και εστιάζει στη δομή και λειτουργία χημικών συστημάτων με υψηλή πολυπλοκότητα (υπερμόρια) που προκύπτουν από το συνδυασμό δύο ή περισσοτέρων διακριτών χημικών ειδών (μορίων, ιόντων) και συγκρατούνται με ασθενείς (και αντιστρεπτές) διαμοριακές δυνάμεις (π.χ. αλληλεπιδράσεις π-π, δεσμούς υδρογόνου, υδρόφοβες αλληλεπιδράσεις, δυνάμεις van der Waals, αλληλεπιδράσεις διπόλου-διπόλου, δεσμούς ένταξης μετάλλου-υποκαταστάτη κλπ).
Ένα σημαντικό πεδίο της υπερμοριακής χημείας είναι αυτό της κρυσταλλικής μηχανικής (crystal engineering) που αναφέρεται στη στρατηγική σχεδιασμού ενός κρυσταλλικού υλικού με επιθυμητές ιδιότητες και βασίζεται στην κατανόηση και τον έλεγχο των διαμοριακών αλληλεπιδράσεων των μορίων στην κρυσταλλική κατάσταση.
Καταρχήν, πραγματοποιήθηκε η σύνθεση συμπλόκων ενώσεων με γενικό τύπο ΜΙΙ/Χ-/L, όπου ΜΙΙ = CuII, X- = Cl-, NO3-, ClO4-, SiF62-, SO42- και L = 2-φαινυλοϊμιδαζόλιο. Από τις συνθετικές παραμέτρους που μεταβάλλαμε -γραμμομοριακή αναλογία μετάλλου:υποκαταστάτη, πολικότητα του διαλύτη (MeOH, EtOH, MeCN, DMF, CH2Cl2), συνθήκες θερμοκρασίας και μέθοδο κρυστάλλωσης– απομονώσαμε και χαρακτηρίσαμε τα σύμπλοκα: (LH)+(NO3)- (1), [CuCl2L2] (2), [Cu2(OMe)2(L)4(NO3)2]∙2MeOH (3∙2MeOH), [Cu(L)4](NO3)2 (4), [Cu2(OMe)2(L)4](ClO4)2 (5), [Cu(L)4](ClO4)2 (6), [Cu2(OMe)2(L)4]SiF6 (7) και [Cu2(SO4)2(L)4] (8). Με τη βοήθεια της κρυσταλλογραφικής ανάλυσης με ακτίνες Χ των ανωτέρων συμπλόκων, διαπιστώθηκε ότι οι διαμοριακές αλληλεπιδράσεις που είναι υπεύθυνες για την υπερμοριακή οργάνωση των δομών τους είναι ισχυροί και ασθενείς δεσμοί υδρογόνου και αλληλεπιδράσεις τύπου π-π.
Αναλυτικότερα:
• Σταθερά μοτίβα διαμοριακών αλληλεπιδράσεων (συνθόνια) σχηματίζονται μεταξύ των τεκτονίων N-H των ιμιδαζολικών δακτυλίων και των ανόργανων ανιόντων X- (Cl-, NO3-, ClO4-, SiF62-, SO42-) ή/και πλεγματικών μορίων διαλύτη, οδηγώντας σε 1D, 2D και 3D υπερμοριακές δομές.
• Οι δομές σταθεροποιούνται περαιτέρω μέσω ενδομοριακών (σύμπλοκα 4, 5 και 6) και διαμοριακών (σύμπλοκο 2) αλληλεπιδράσεων τύπου π-π.
• Το μέγεθος και το φορτίο των ανιόντων δεν επηρεάζουν τους δομικούς πυρήνες των μορίων, σε αντίθεση με την υπερμοριακή οργάνωση που επηρεάζεται καθοριστικά και οδηγεί σε 2D και 3D αρχιτεκτονικές. / The main target of this diploma thesis was the crystal engineering studies of coordination compounds of CuII using 2-phenylimidazole as ligand. Crystal engineering may be regarded as the solid-state branch of supramolecular chemistry.
Supramolecular chemistry is one of the most popular and rapidly developing areas of experimental chemistry. It may be defined as the chemistry of weak intermolecular forces and focuses on the structure and function of chemical systems of high complexity (supermolecules), resulting from the association of two or more discrete chemical species (molecules, ions) held together by weak (and reversible) intermolecular forces (e.g. π-π interactions, hydrogen bonds, hydrophobic interactions, van der Waals forces, dipole-dipole interactions, metal-ligand coordination bonds etc).
Crystal engineering is an important field of supramolecular chemistry that refers to the design and synthesis of a crystalline material with desired properties, based on the understanding and exploitation of intermolecular interactions in the crystalline state.
Initially the synthesis of coordination complexes with general formula ΜΙΙ/Χ-/L [ΜΙΙ = CuII, X- = Cl-, NO3-, ClO4-, SiF62-, SO42- and L =2-phenylimidazole] took place. By altering the parameters of synthesis –metal:ligand molar ratio, solvent polarity (MeOH, EtOH, MeCN, DMF, CH2Cl2), temperature, as well as crystallization method– we were able to isolate and study the following complexes: (LH)+(NO3)- (1), [CuCl2L2] (2), [Cu2(OMe)2(L)4(NO3)2]∙2MeOH (3∙2MeOH), [Cu(L)4](NO3)2 (4), [Cu2(OMe)2(L)4](ClO4)2 (5), [Cu(L)4](ClO4)2 (6), [Cu2(OMe)2(L)4]SiF6 (7) και [Cu2(SO4)2(L)4] (8). Based on the X-ray crystal structure determination of the above complexes, it was established that the intermolecular interactions responsible for the supramolecular organization of the structures are strong and weak hydrogen bonds, as well as π-π interactions.
Specifically:
• Supramolecular synthons between the N-H tectons of imidazole rings and the inorganic anions X- (Cl-, NO3-, ClO4-, SiF62-, SO42-) or/and lattice solvent molecules are formed, leading to 1D, 2D and 3D supramolecular structures.
• The structures are further stabilized by intramolecular (complexes 4, 5 and 6) and intermolecular (complex 2) π-π interactions.
• The size and charge of the anions X- used does not affect the structural core of the complexes, in contrast to their supramolecular organization which is decisively affected, leading to 2- and 3D architectures.
|
3 |
Κρυσταλλική μηχανική μεταλλικών συμπλόκων με ιμιδαζολικούς Ν-δότεςΝτούρος, Βασίλειος 07 June 2013 (has links)
Βασικός στόχος της παρούσης Διπλωματικής Εργασίας ήταν η μελέτη της κρυσταλλικής μηχανικής μίας σειράς συμπλόκων ενώσεων του CoII με ιμιδαζολικά παράγωγα ως υποκαταστάτες και ειδικότερα με το 2-φαινυλοϊμιδαζόλιο και το 4-φαινυλοϊμιδαζόλιο. Η κρυσταλλική μηχανική μπορεί να θεωρηθεί ως ο κλάδος της υπερμοριακής χημείας στη στερεά κατάσταση.
Η υπερμοριακή χημεία (supramolecular chemistry) είναι μία από τις πλέον δημοφιλείς και γρήγορα αναπτυσσόμενες περιοχές της πειραματικής χημείας. Χαρακτηρίζεται ως η χημεία των ασθενών διαμοριακών δυνάμεων και εστιάζει στη δομή και λειτουργία των χημικών συστημάτων με υψηλή πολυπλοκότητα (υπερμόρια) που προκύπτουν από το συνδυασμό δύο ή περισσοτέρων διακριτών χημικών ειδών (μορίων, ιόντων) και συγκρατούνται με ασθενείς (και αντιστρεπτές) διαμοριακές δυνάμεις (π.χ. αλληλεπιδράσεις π-π, δεσμούς υδρογόνου, υδρόφοβες αλληλεπιδράσεις, δυνάμεις van der Waals, αλληλεπιδράσεις διπόλου-διπόλου κλπ).
Ένα σημαντικό πεδίο της υπερμοριακής χημείας είναι αυτό της κρυσταλλικής μηχανικής (crystal engineering) που αναφέρεται στη στρατηγική σχεδιασμού ενός κρυσταλλικού υλικού με επιθυμητές ιδιότητες και βασίζεται στην κατανόηση και τον έλεγχο των διαμοριακών αλληλεπιδράσεων των μορίων στην κρυσταλλική κατάσταση.
Στην παρούσα Διπλωματική Εργασία πραγματοποιήθηκε η σύνθεση συμπλόκων ενώσεων με γενικό τύπο ΜΙΙ/Χ-/L ή L', όπου ΜΙΙ = CoII, X- = Cl-, I-, SCN-, NO3-, L = 2-φαινυλοϊμιδαζόλιο και L' = 4-φαινυλοϊμιδαζόλιο. Με μεταβολή των σημαντικότερων συνθετικών παραμέτρων –γραμμομοριακή αναλογία μετάλλου:υποκαταστάτη, πολικότητα του διαλύτη (MeOH, MeCN, Me2CO, CH2Cl2, CHCl3), συνθήκες θερμοκρασίας και μέθοδο κρυστάλλωσης– απομονώσαμε και χαρακτηρίσαμε τα εξής σύμπλοκα: [CoCl2L2] (1), [CoI2L2] (2), [Co(NCS)2L2] (3), [Co(NO3)2L2] (4), [CoL'4(MeCN)(H2O)](NO3)2 (5), [CoL'4(MeCN)(H2O)]I2 (6), [Co(NCS)2L'2] (7), [Co(NCS)2L'4]•MeOH (8•MeOH).
Όπως διαπιστώθηκε με την βοήθεια της κρυσταλλογραφικής ανάλυσης ακτίνων Χ επί μονοκρυστάλλων των ανωτέρω συμπλόκων, οι διαμοριακές αλληλεπιδράσεις που είναι υπεύθυνες για την υπερμοριακή οργάνωση των δομών τους είναι ισχυροί και ασθενείς δεσμοί υδρογόνου και αλληλεπιδράσεις τύπου π-π.
Ειδικότερα, τα δεδομένα για τα σύμπλοκα με τον L διαπιστώθηκε ότι:
• Σταθερά μοτίβα διαμοριακών αλληλεπιδράσεων (συνθόνια) σχηματίζονται μεταξύ των τεκτονίων N-H των ιμιδαζολικών δακτυλίων και των ενταγμένων ιόντων X (X = Cl, I, NO3, SCN) όλων των συμπλόκων οδηγώντας σε μονο- ή δισδιάστατες δομές. Οι δομές αυτές ενισχύονται περαιτέρω από ασθενείς αλληλεπιδράσεις C-H∙∙∙X (X= Cl, I, O, S) προς 3D υπερμοριακές δομές.
• Εκτός του συμπλόκου 2 στο οποίο παρατηρούνται ενδομοριακές π-π αλληλεπιδράσεις σε καμία άλλη δομή δεν παρατηρούνται τέτοιες ενδο- ή διαμοριακές αλληλεπιδράσεις.
Για τα σύμπλοκα με τον υποκαταστάτη L' διαπιστώθηκε παρόμοια ότι:
• Σταθερά μοτίβα διαμοριακών αλληλεπιδράσεων (συνθόνια) σχηματίζονται μεταξύ των τεκτονίων N-H των ιμιδαζολικών δακτυλίων και των ανόργανων ανιόντων X- (X- = NO3-, I-) στα σύμπλοκα 5 και 6 ή του ενταγμένου SCN στα σύμπλοκα 7 και 8•MeOH ή/και πλεγματικών μορίων διαλύτη (σύμπλοκο 8•MeOH), οδηγώντας σε μονο- ή δισδιάστατες δομές. Παρόμοια με τις δομές 1-4, ασθενείς C-H∙∙∙X (X= O, S) αλληλεπιδράσεις οδηγούν τελικά σε συγκρότηση 3D δομών.
• Στα σύμπλοκα 7 και 8•MeOH η οργάνωση της δομής ευνοεί παράλληλα το σχηματισμό διαμοριακών π-π αλληλεπιδράσεων.
• Στα σύμπλοκα 5 και 6 είναι απαραίτητη η παρουσία αντισταθμιστικών ιόντων στο πλέγμα τους καθώς πρόκειται για κατιοντικά σύμπλοκα του τύπου [CoL'4(MeCN)(H2O)]2+.
• Μόνο το σύμπλοκο 8•MeOH περιέχει πλεγματικά μόρια διαλύτη (MeOH) χωρίς να είναι απαραίτητη η παρουσία αντισταθμιστικών ιόντων στο πλέγμα του.
Συμπερασματικά, ο κυρίαρχος παράγοντας που καθορίζει την υπερμοριακή οργάνωση των συμπλόκων και των δύο κατηγοριών (δηλ. με υποκαταστάτες τα ισομερή, 2- και 4-φαινυλοϊμιδαζόλιο) είναι τα ισχυρά συνθόνια N-H∙∙∙X (X = Cl, I, NO3, SCN). / The main target of this diploma thesis was the crystal engineering studies of a series of coordination compounds of CoII with substituted imidazoles as ligands and specifically, with 2-phenylimidazole and 4-phenylimidazole. Crystal engineering may be regarded as the solid-state branch of supramolecular chemistry.
Supramolecular chemistry is one of the most popular and rapidly developing areas of experimental chemistry. It may be defined as the chemistry of weak intermolecular forces and focuses on the structure and function of chemical systems of high complexity (supermolecules), resulting from the association of two or more discrete chemical species (molecules, ions) held together by weak (and reversible) intermolecular forces (e.g. π-π interactions, hydrogen bonds, hydrophobic interactions, van der Waals forces, dipole-dipole interactions etc).
Crystal engineering is an important field of supramolecular chemistry that refers to the design and synthesis of a crystalline material with desired properties, based on the understanding and control of intermolecular interactions in the crystalline state.
In this diploma thesis the synthesis of a series of coordination complexes with general formula ΜΙΙ/Χ-/L or L' [ΜΙΙ = CoII, X- = Cl-, I-, SCN-, NO3- and L = 2-phenylimidazole, L' = 4-phenylimidazole] took place. By altering the parameters of synthesis –metal:ligand molar ratio, solvent polarity (MeOH, MeCN, Me2CO, CH2Cl2, CHCl3), temperature, as well as crystallization method– we were able to isolate and study the following complexes: [CoCl2L2] (1), [CoI2L2] (2), [Co(NCS)2L2] (3), [Co(NO3)2L2] (4), [CoL'4(MeCN)(H2O)](NO3)2 (5), [CoL'4(MeCN)(H2O)]I2 (6), [Co(NCS)2L'2] (7), [Co(NCS)2L'4]•MeOH (8•MeOH).
As established by the single-crystal X-ray structure determination of the above complexes, the intermolecular interactions responsible for the supramolecular organization of the structures are strong and weak hydrogen bonds, as well as π-π interactions.
A detailed study of the complexes with ligand L reveals that:
• Supramolecular synthons between the N-H tectons of imidazole rings and the coordinated X ion (X = Cl, I, NO3, SCN) are formed, leading to 1- or 2D structures, which are further enhanced by weak C-H∙∙∙X (X= Cl, I, O, S) interactions, leading to 3D supramolecular architectures.
• There are no intra- or intermolecular π-π interactions observed in complexes 1-4, with the exception of one such intramolecular interaction in complex 2.
A detailed study of the complexes with ligand L' reveals that:
• Supramolecular synthons between the N-H tectons of imidazole rings and the inorganic anions X- (X- = NO3-, I-) of complexes 5 and 6 or the coordinated SCN of complexes 7and 8 or/and lattice solvent molecules (complex 8•MeOH) are formed, leading to 1- or 2D structures, further organized in 3D architectures by means of weak C-H∙∙∙X (X= O, S) interactions.
• In certain complexes (7 and 8•MeOH) the disposition of the complexes favors the formation of intermolecular π-π interactions.
• In complexes 5 and 6 the presence of counter ions in their crystal structures is necessary since they are cationic complexes with the [CoL'4(MeCN)(H2O)]2+ unit as their structural core.
• Only complex 8•MeOH contains lattice solvent molecules (MeOH) without the presence of counter ions in its crystal lattice.
In conclusion, the determining factor of the supramolecular organization of the two series of complexes, that is with the isomers 2- and 4-phenylimidazole as ligands, is the presence of the strong synthons N-H∙∙∙X (X = Cl, I, NO3, SCN).
|
4 |
Studies in Metallosupramolecular ChemistryCottam, Justine Ruth Amy January 2008 (has links)
Metallosupramolecular chemistry involves the construction of nanoscale molecular assemblies by reacting metal atoms with bridging organic ligands. The metal atoms act as a type of molecular ‘glue’ binding together the organic ligands in specific orientations. Thus, appropriate combinations of metal ions and ligands lead to the controlled self-assembly of interesting one-, two- and three-dimensional molecular aggregates.
This thesis details the preparation of a range of novel flexible bridging heterocyclic ligands using conventional organic synthesis, and then explores their reactions with a variety of transition metal precursors. By varying the nature of the organic ligand and the transition metal precursor, new and exciting supramolecular topologies and architectures can be formed. A total of forty-eight ligands were synthesised in this work, forty-seven of which are new compounds. The majority of the ligands synthesised were based around commercially available bisphenol cores. All forty-eight of the ligands had nitrogen heterocyclic groups as coordinating units.
The ligands discussed in this thesis can be divided into three main sections. The first involves the synthesis and coordination chemistry of two-armed ligands based around the Bisphenol A, Bisphenol Z and Bisphenol AP cores. The second section describes the synthesis and coordination chemistry of the larger Bisphenol P and Bisphenol M based two-armed bridging ligands. The third section describes the synthesis and coordination chemistry of various multi-substituted ligands, including tripodal ligands based around a trisphenol core, four-armed ligands and six-armed ligands.
The two-armed bisphenol based ligands proved very successful as synthons in metallosupramolecular chemistry and produced many products with a variety of different metal atoms. The complexes characterised included discrete dimeric products, coordination polymers and a number of helicates, including a dinuclear quadruply-stranded helicate.
Multi-armed ligands are topical, because they have multiple coordination sites that are capable of binding and bridging multiple metal atoms. Such coordination can lead to the construction of cage-like species and complicated networks. A series of three-armed ligands based around a trisphenol core were synthesised with the intention to use these to form such species on coordination with appropriate metal salts. Indeed, one of the products of self-assembly was an interesting M₃L₂ cage. Various other multi-armed ligands were also investigated.
The ligands and complexes in this thesis were characterised by a variety of structural techniques, such as ¹H NMR, ¹³C NMR, mass spectrometry, elemental analysis and X-ray crystallography when crystals were obtained. The crystal structures of twenty-seven ligands and forty-three complexes are described.
|
Page generated in 0.1022 seconds