• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanism of metallothionein gene regulation in tilapia.

January 2007 (has links)
Chan, Wai Lun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 140-157). / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.iii / Acknowledgements --- p.v / Table of Contents --- p.1 / List of Tables --- p.4 / List of Figures --- p.5 / List of Abbreviations --- p.8 / Chapter 1. --- Introduction --- p.10 / Chapter 1.1 --- Biology of metals --- p.10 / Chapter 1.2 --- Metal detoxification systems --- p.11 / Chapter 1.3 --- Metallothionein --- p.13 / Chapter 1.4 --- Classification of MTs --- p.15 / Chapter 1.5 --- Biological roles of MT --- p.15 / Chapter 1.5.1 --- Homeostasis of essential transition metal ion --- p.15 / Chapter 1.5.2 --- Detoxification of non-essential heavy metal ion --- p.17 / Chapter 1.5.3 --- Protection against oxidative stress --- p.18 / Chapter 1.5.4 --- Role in neurodegenerative diseases --- p.19 / Chapter 1.6 --- Molecular biology of MT --- p.19 / Chapter 1.6.1 --- MT gene structure --- p.19 / Chapter 1.6.2 --- MT gene regulation --- p.21 / Chapter 1.7 --- MRE binding transcription factor-1 (MTF-1) --- p.30 / Chapter 1.8 --- Activation of MTF-1 --- p.31 / Chapter 1.9 --- Target genes of MTF-1 --- p.32 / Chapter 1.10 --- Fish MT gene and MTF-1 --- p.33 / Chapter 1.11 --- Tilapia --- p.39 / Chapter 1.12 --- Study of tilapia MT --- p.41 / Chapter 1.13 --- Aims and rationale of study --- p.43 / Chapter 2. --- Materials and Methods --- p.45 / Chapter 2.1 --- Cloning of tilapia MT gene 5'-flanking region --- p.45 / Chapter 2.1.1 --- Animals --- p.45 / Chapter 2.1.2 --- Preparation of tilapia genomic DNA --- p.45 / Chapter 2.1.3 --- DNA walking --- p.45 / Chapter 2.1.4 --- Amplification of whole tiMT gene --- p.50 / Chapter 2.2 --- Determination of transcription start site --- p.51 / Chapter 2.2.1 --- Total RNA extraction --- p.51 / Chapter 2.2.2 --- Rapid amplification of 5,complementary DNA ends (5' RACE) --- p.52 / Chapter 2.3 --- Transient transfection assay --- p.54 / Chapter 2.3.1 --- Cell culture --- p.54 / Chapter 2.3.2 --- Construction of pGL3-tiMT deletion mutants --- p.54 / Chapter 2.3.3 --- Preparation of heavy metal solutions --- p.56 / Chapter 2.3.4 --- Determination of heavy metal ion toxicities by alamarBlue´ёØ assay --- p.56 / Chapter 2.3.5 --- Transient transfection of plasmids to Hepa-T1 cells --- p.56 / Chapter 2.3.6 --- Metal ions treatment and study of tiMT promoter activities --- p.57 / Chapter 2.3.7 --- Transient gene expression studies of deletion mutants of tiMT promoter --- p.57 / Chapter 2.4 --- Site-directed mutagenesis of tiMT promoter --- p.58 / Chapter 2.4.1 --- Polymerase chain reaction (PCR)-based site-directed mutagenesis --- p.58 / Chapter 2.4.2 --- Transient transfection of plasmids to Hepa-T1 cells and study of tiMT promoter activities --- p.62 / Chapter 2.5 --- Electrophoretic mobility shift assay (EMSA) --- p.63 / Chapter 2.5.1 --- Extract preparation --- p.63 / Chapter 2.5.2 --- Preparation of radiolabeled tiMRE oligonucleotides --- p.63 / Chapter 2.5.3 --- Electrophoretic mobility shift assay (EMSA) --- p.64 / Chapter 3. --- Results --- p.66 / Chapter 3.1 --- "Cloning of tilapia MT (tiMT) gene 5,-flanking region and amplification of whole tiMT gene" --- p.66 / Chapter 3.2 --- Determination of transcription start site --- p.69 / Chapter 3.3 --- Cloning of tiMT promoter fragment into reporter vector --- p.72 / Chapter 3.4 --- Determination of heavy metal ion toxicities by alamarBlue´ёØ assay --- p.72 / Chapter 3.5 --- Study of tiMT promoter activities by heavy metal ions exposure..… --- p.72 / Chapter 3.6 --- Cloning of deletion mutants of tiMT promoter --- p.79 / Chapter 3.7 --- Transient gene expression studies of deletion mutants of tiMT promoter --- p.80 / Chapter 3.8 --- Cloning of mutants with site-directed mutagenesis in tiMT promoter --- p.88 / Chapter 3.9 --- Site-directed mutagenesis of tiMT promoter --- p.92 / Chapter 3.10 --- Electrophoretic Mobility Shift Assay (EMSA) --- p.97 / Chapter 4. --- Discussion --- p.102 / Chapter 4.1 --- Tilapia MT gene --- p.102 / Chapter 4.2 --- Resistance of tilapia to heavy metal ions --- p.107 / Chapter 4.3 --- Functional analysis of tiMT gene promoter by transient transfection --- p.111 / Chapter 4.4 --- DNA binding of metal responsive transcription factor in Hepa-T1 cells --- p.121 / Chapter 4.5 --- Conclusion --- p.138 / References --- p.140
2

Heavy metal contamination and metallothionein mRNA levels in the tissues of tilapia.

January 1998 (has links)
Lam Kwok Lim. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 107-126). / Abstract also in Chinese. / Acknowledgments --- p.i / Presentations Derived from the Present Thesis Work --- p.ii / Abstract --- p.iv / Abbreviations --- p.vii / Abbreviation Table for Amino Acids --- p.ix / List of Figures --- p.x / List of Tables --- p.xii / Contents --- p.xiii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Metallothionein (MT) --- p.1 / Chapter 1.1.1 --- Classification of MT --- p.1 / Chapter 1.1.2 --- Structure of MT --- p.2 / Chapter 1.1.3. --- Structure of MT Genes --- p.4 / Chapter 1.1.4 --- Function of MT --- p.5 / Chapter 1.1.5 --- Regulation of MT Expression --- p.7 / Chapter 1.1.6 --- Fish MT --- p.9 / Chapter 1.1.7. --- Aims and Rationale of the Present Study --- p.12 / Chapter 2 --- MT mRNA Induction of Tilapia After Intraperitoneal Injection of Metal --- p.18 / Chapter 2.1 --- Introduction --- p.18 / Chapter 2.1.1. --- Specific Aims of This Chapter --- p.19 / Chapter 2.2 --- Materials and Methods --- p.20 / Chapter 2.2.1 --- Regents --- p.20 / Chapter 2.2.1.1 --- Purification of Total RNA --- p.20 / Chapter 2.2.1.2 --- Denaturing Gel and Vacuum Blotting of RNA (Northern Blotting) --- p.20 / Chapter 2.2.1.3 --- Hybridization --- p.21 / Chapter 2.2.2 --- Methods --- p.21 / Chapter 2.2.2.1 --- Purification of Total RNA --- p.21 / Chapter 2.2.2.2 --- Vacuum Blotting of Total RNA (Northern Blotting) --- p.22 / Chapter 2.2.2.3 --- Radioactive Labeling of Nucleic Acid Probes --- p.22 / Chapter 2.2.2.4 --- Hybridization --- p.22 / Chapter 2.2.2.5 --- Densitometric Analysis --- p.23 / Chapter 2.2.2.6 --- Calculation of MT mRNA Levels and Analysis of Results --- p.23 / Chapter 2.2.3 --- Endogenous MT mRNA Expression of Juvenile Tilapia and Carp --- p.23 / Chapter 2.2.4 --- Induction of MT mRNA Juvenile Tilapia and Carp Injected with Metals --- p.24 / Chapter 2.3 --- Results --- p.25 / Chapter 2.3.1 --- Endogenous Levels of MT mRNA in Tilapias in Normal Conditions --- p.25 / Chapter 2.3.2 --- Induction of MT mRNA Levels in Juvenile Tilapia Injected with Metals --- p.25 / Chapter 2.3.1.1 --- Copper Injection --- p.25 / Chapter 2.3.1.2 --- Zinc Injection --- p.25 / Chapter 2.3.1.3 --- Cadmium Injection --- p.26 / Chapter 2.3.3 --- Induction of MT mRNA Levels in Juvenile Carp with Zinc Injection --- p.26 / Chapter 2.4 --- Discussion --- p.26 / Chapter 2.4.1 --- MT mRNA Expression of Tilapia and Carp Injected with Metals --- p.26 / Chapter 2.5 --- Conclusions --- p.29 / Chapter 3 --- Induction Level of MT mRNA in Tilapia After Aqueous Exposure to Metals --- p.35 / Chapter 3.1 --- Introduction --- p.35 / Chapter 3.1.1 --- Specific aims of this chapter --- p.36 / Chapter 3.2 --- Material s and Methods --- p.36 / Chapter 3.2.1 --- 96hours LC-50 values for zinc and copper --- p.36 / Chapter 3.2.2 --- Induction of MT mRNA in Juvenile Tiapias under Metal Aqueous Exposures --- p.37 / Chapter 3.2.3 --- Calculation of Fold Induction of MT mRNA and Analysis of Results --- p.38 / Chapter 3.2.4 --- Metal Analysis --- p.38 / Chapter 3.3 --- Results --- p.38 / Chapter 3.3.1 --- LC-50 values of metals for Juvenile Tilapia --- p.38 / Chapter 3.3.2 --- Induction of MT mRNA in Juvenile Tilapia under Metal Aqueous Exposures --- p.39 / Chapter 3.3.2.1 --- Aqueous Exposure to Copper --- p.39 / Chapter 3.3.2.2 --- Aqueous Exposure to Zinc --- p.40 / Chapter 3.3.2.3 --- Aqueous Exposure to Cadmium --- p.41 / Chapter 3.3.3 --- Induction of MT mRNA in Juvenile Carp after Aqueous Exposures to Metal --- p.41 / Chapter 3.3.3.1 --- Aqueous Exposure to Cadmium --- p.41 / Chapter 3.3.4 --- Metal Concentrations of Water Samples from the Aquaria in the Metal Exposure Test of Tilapia and Carp --- p.42 / Chapter 3.4 --- Discussion --- p.42 / Chapter 3.4.1 --- LC-50 values of Metals for Tilapia --- p.42 / Chapter 3.4.2 --- MT mRNA Expression of Tilapias under Metal Aqueous Exposure --- p.44 / Chapter 3.4.3 --- Normalization of the Signals of Northern Blot Analysis --- p.47 / Chapter 3.5 --- Conclusions --- p.48 / Chapter 4 --- Field Study --- p.58 / Chapter 4.1 --- Introduction --- p.58 / Chapter 4.1.1 --- Specific Aims of this Chapter --- p.59 / Chapter 4.2 --- Materials and Methods --- p.59 / Chapter 4.2.1 --- Sampling Sites --- p.59 / Chapter 4.2.2 --- Data Analysis --- p.60 / Chapter 4.2.3 --- Harvest of Feral Tilapia --- p.60 / Chapter 4.2.4 --- Determination of Metal Concentration of Metal Concentration in the Tissues of Feral Tilapia --- p.60 / Chapter 4.2.5 --- Endogenous MT mRNA Levels Using Northern Blot Analysis --- p.61 / Chapter 4.2.6 --- Calculation of MT mRNA Levels and Analysis of Results --- p.61 / Chapter 4.3 --- Results --- p.62 / Chapter 4.3.1 --- Metal Concentrations in the Tissues of Feral Tilapia --- p.62 / Chapter 4.3.2 --- Comparison of Metal Concentrations Among Different Tissues of Feral Tilapia --- p.62 / Chapter 4.3.3 --- MT mRNA Levels in the Tissues of Feral Tilapia --- p.63 / Chapter 4.3.4 --- Correlation Between Metal Concentrations and Endogenous MT mRNA Levels in the Tissues of Feral Tilapia --- p.63 / Chapter 4.4 --- Discussion --- p.64 / Chapter 4.4.1 --- Bioaccumulation of Metals --- p.64 / Chapter 4.4.2 --- Endogenous Levels of MT mRNA in the Feral Tilapia --- p.67 / Chapter 4.5 --- Conclusions --- p.68 / Chapter 5 --- Cloning of Tilapia MT Genes --- p.86 / Chapter 5.1 --- Specific Aims of This Chapter 、 --- p.86 / Chapter 5.2 --- Materials and Methods --- p.87 / Chapter 5.2.1 --- Regents --- p.87 / Chapter 5.2.1.1 --- Preparation of Plasmid DNA --- p.87 / Chapter 5.2.1.2 --- Preparation of Genomic DNA --- p.87 / Chapter 5.2.1.3 --- Restriction Enzyme Digestion --- p.88 / Chapter 5.2.1.4 --- Vacuum Blotting of DNA (Southern Blotting) --- p.88 / Chapter 5.2.1.5 --- Polymerase Chain Reaction --- p.89 / Chapter 5.2.1.6 --- Transformation of E.coli Competent Cells --- p.89 / Chapter 5.2.1.7 --- Nucleotide Sequence Determination --- p.89 / Chapter 5.2.1.8 --- List of Primers --- p.90 / Chapter 5.2.1.8.1 --- Primers for Nucleotide Sequence Determination --- p.90 / Chapter 5.2.1.8.2 --- Tilapia MT Specific Primers for PCR --- p.90 / Chapter 5.2.2 --- Methods --- p.91 / Chapter 5.2.2.1 --- Preparation of Plasmid --- p.91 / Chapter 5.2.2.2 --- Preparation of Genomic DNA --- p.91 / Chapter 5.2.2.3 --- Preparation of Enzyme Digestion --- p.92 / Chapter 5.2.2.4 --- Vacuum Blotting of Genomic DNA (Southern Blotting) --- p.92 / Chapter 5.2.2.5 --- Radioactive Labeling of Nucleic Acid Probes --- p.92 / Chapter 5.2.2.6 --- Hybridization --- p.93 / Chapter 5.2.2.7 --- Polymerase Chain Reaction --- p.93 / Chapter 5.2.3 --- Southern Blot Analysis of Tilapia Genomic DNA --- p.93 / Chapter 5.2.4 --- Analysis of the Sequences of Tilapia MT Genes --- p.94 / Chapter 5.2.4.1 --- Amplification of MT Genes Using PCR --- p.94 / Chapter 5.2.4.2 --- Cloning of the MT Genes --- p.94 / Chapter 5.2.4.3 --- Transformation of E.coli Competent Cell --- p.94 / Chapter 5.2.4.4 --- Nucleotide Sequence Determination --- p.95 / Chapter 5.3 --- Results --- p.95 / Chapter 5.3.1 --- Southern Blot Analysis of Tilapia Genomic DNA --- p.95 / Chapter 5.3.2 --- Amplification of MT Gene Fragments Using PCR --- p.95 / Chapter 5.3.3 --- Analysis of the Sequences of Tilapia MT Genes --- p.96 / Chapter 5.4 --- Discussion --- p.96 / Chapter 5.4.1 --- Fish MT Genes --- p.96 / Chapter 5.5 --- Conclusions --- p.98 / Chapter 6 --- General Discussion --- p.104 / References --- p.107
3

Identification of Cis-acting elements from common carp (Cyprinus carpio) metallothionein gene.

January 1998 (has links)
Shiu Ka Man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 176-182). / Abstract also in Chinese. / Acknowledgments --- p.i / Presentations Derived from the Present Thesis Work --- p.ii / Chinese Abstract --- p.iii / English Abstract --- p.iv / List of Abbreviations --- p.v / Abbreviation for Amino Acids and Nucleotides --- p.vii / List of Figures --- p.viii / List of Tables --- p.vi / Contents / Chapter Chapter.1 --- Literature Review --- p.1 / Chapter 1.1 --- Transcriptional Regulation of Gene Expression --- p.1 / Chapter 1.2 --- MT: A Brief Review --- p.4 / Chapter 1.3 --- Transcriptional Regulation of MT --- p.15 / Chapter 1.4 --- MT Promoter Organization and Function --- p.18 / Chapter 1.5 --- Fish MT Genes --- p.29 / Chapter 1.6 --- Aim and Rationale of Present Studies --- p.32 / Chapter Chapter 2 --- PCR Cloning of Common Carp MT Gene --- p.34 / Chapter 2.1 --- Introduction --- p.34 / Chapter 2.1.1 --- The Biology of Common Carp --- p.34 / Chapter 2.1.2 --- The Study of Common Carp MT --- p.35 / Chapter 2.2 --- Materials and Methods --- p.39 / Chapter 2.2.1 --- Materials --- p.39 / Chapter 2.2.1.1 --- Polymerase Chain Reaction (PCR) --- p.39 / Chapter 2.2.1.2 --- Agarose Gel Electrophoresis --- p.39 / Chapter 2.2.1.3 --- Gene Clean by Sephaglas´ёØ BandPrep Kit (Pharmacia) --- p.40 / Chapter 2.2.1.4 --- TA Cloning --- p.40 / Chapter 2.2.1.5 --- Transformation of Plasmid Vector into Competent Cell (Heat Shock Method) --- p.41 / Chapter 2.2.1.6 --- Preparation of Plasmid DNA --- p.41 / Chapter 2.2.1.7 --- DNA Sequencing --- p.42 / Chapter 2.2.1.7.1 --- Template Denaturation and Primer Annealing --- p.42 / Chapter 2.2.1.7.2 --- Labeling and Termination Reaction --- p.42 / Chapter 2.2.1.7.3 --- DNA Sequencing Electrophoresis --- p.43 / Chapter 2.2.1.8 --- Total RNA Extraction --- p.43 / Chapter 2.2.1.9 --- PolyA RNA Extraction --- p.44 / Chapter 2.2.1.10 --- Micro Bio-Spin Chromatography --- p.44 / Chapter 2.2.1.11 --- Analysis of the Transcription Start Site --- p.45 / Chapter 2.2.2 --- Methods --- p.46 / Chapter 2.2.2.1 --- Polymerase Chain Reaction (PCR) --- p.46 / Chapter 2.2.2.2 --- Gene Clean by Sephaglas ´ёØ BandPrep Kit (Pharmacia) --- p.46 / Chapter 2.2.2.3 --- TA Cloning --- p.47 / Chapter 2.2.2.4 --- Transformation of Plasmid Vector into Competent Cell (Heat Shock Method) --- p.47 / Chapter 2.2.2.5 --- Transformation of Plasmid Vector into Competent Cell (Heat Shock Method) --- p.48 / Chapter 2.2.2.6 --- Preparation of Plasmid DNA --- p.48 / Chapter 2.2.2.6.1 --- Small Scale Alkali Preparation of Plasmid DNA --- p.48 / Chapter 2.2.2.6.2 --- Large Scale Preparation of Plasmid DNA using Wizard Maxiprep Kit (Promega) --- p.49 / Chapter 2.2.7 --- DNA Sequencing --- p.50 / Chapter 2.2.2.7.1 --- Template Denaturation and Primer Annealing --- p.50 / Chapter 2.2.2.7.2 --- Labeling and Termination Reaction --- p.51 / Chapter 2.2.2.7.3 --- DNA Sequencing Electrophoresis --- p.51 / Chapter 2.2.2.8 --- Total RNA Extraction --- p.52 / Chapter 2.2.2.9 --- PolyA RNA Extraction --- p.53 / Chapter 2.2.2.10 --- Analysis of the Transcription Start Site --- p.55 / Chapter 2.3 --- Results --- p.56 / Chapter 2.3.1 --- PCR Cloning of the MT Gene --- p.56 / Chapter 2.3.2 --- Identification of the Transcriptional Start Site --- p.57 / Chapter 2.4 --- Discussion --- p.60 / Chapter 2.4.1 --- PCR Cloning of the MT Gene --- p.60 / Chapter 2.4.2 --- Comparison of Common Carp MT Promoter with Other --- p.60 / Chapter 2.4.3 --- Identification of the Transcriptional Start Site --- p.62 / Chapter 2.5 --- Conclusion --- p.63 / Chapter Chapter 3. --- Functional Assay of Common Carp MT Promoter --- p.64 / Chapter 3.1 --- Introduction --- p.64 / Chapter 3.1.1 --- Fish MT Promoters --- p.64 / Chapter 3.2 --- Materials and Methods --- p.68 / Chapter 3.2.1 --- Materials --- p.68 / Chapter 3.2.1.2 --- Micro Bio-Spin Chromatography --- p.68 / Chapter 3.2.1.3 --- Construction of Deletion Mutants --- p.68 / Chapter 3.2.1.4 --- Isolation of Hepatocytes --- p.69 / Chapter 3.2.1.5 --- Determination of LC50 Values for Common Carp Hepatocytes --- p.69 / Chapter 3.2.1.6 --- Transfection by LipofectAMINE´ёØ (Gibco) --- p.70 / Chapter 3.2.1.9 --- Determination of the Amount of Protein by BCA Protein Assay --- p.70 / Chapter 3.2.1.10 --- β-galactosidase Analysis --- p.71 / Chapter 3.2.2 --- Methods --- p.72 / Chapter 3.2.2.1 --- Subcloning of 5' Flanking Region of Common Carp MT Gene into Reporter Gene --- p.72 / Chapter 3.2.2.2 --- Micro Bio-Spin Chromatography (Bio-rad) --- p.72 / Chapter 3.2.2.3 --- Creating Deletion Mutants --- p.73 / Chapter 3.2.2.4 --- Isolation of Hepatocytes --- p.73 / Chapter 3.2.2.5 --- Determination ofLC50 Values for Common Carp Hepatocytes --- p.74 / Chapter 3.2.2.6 --- Transfection with LipofectAMINE´ёØ (Gibco BRL) --- p.75 / Chapter 3.2.2.7 --- Optimization of Incubation Time of Cells with LipofectAMINE´ёØ --- p.75 / Chapter 3.2.2.8 --- Optimization of Amount of DNA for Transfection --- p.76 / Chapter 3.2.2.9 --- Determination of Protein Concentration by --- p.76 / Chapter 3 2.2.10 --- β-galactosidase Analysis --- p.77 / Chapter 3.2.2.11 --- Fluorescence Measurement --- p.77 / Chapter 3.2.2.12 --- Dose-Response Curve of Different Metals on Transfected Cells --- p.77 / Chapter 3.2.2.13 --- "Fold-Induction of Different Metals, LPS and H202" --- p.78 / Chapter 3.3. --- Result --- p.79 / Chapter 3.3.1 --- Deletion Mutants --- p.79 / Chapter 3.3.2 --- LC50 of Common Carp Hepatocytes --- p.80 / Chapter 3.3.3 --- Optimization of Transfection --- p.81 / Chapter 3.3.4 --- Dose Response Curve --- p.85 / Chapter 3.3.5 --- Deletion Mutants with Different Treatments --- p.95 / Chapter 3.4 --- Discussion --- p.109 / Chapter 3.4.1 --- LC50 Values of Metal Toxicity in Different in vitro Fish Cells Studies --- p.109 / Chapter 3.4.2 --- Dose Response Curve (Figure 3.9 to 3.16) --- p.110 / Chapter 3.4.3 --- Fold Induction in Deletion Mutants --- p.111 / Chapter 3.5 --- Conclusion --- p.128 / Chapter Chapter 4. --- MRE-Binding Proteins --- p.129 / Chapter 4.1 --- Introduction --- p.129 / Chapter 4.1.1 --- MTF-1 --- p.129 / Chapter 4.1.1.1 --- Structure of MTF-1 --- p.129 / Chapter 4.1.1.2 --- MTF-1 is a Zinc Dependent Factor --- p.130 / Chapter 4.1.1.3 --- Band-shift Assay of MTF-1 --- p.132 / Chapter 4.1.1.4 --- MTF-1 is Essential for Both Basal and Metal-Induced MT Transcription --- p.133 / Chapter 4.1.2 --- MBP-l --- p.134 / Chapter 4.1.3 --- MBF-l l --- p.35 / Chapter 4.1.4 --- Rat Zinc Activated Protein --- p.135 / Chapter 4.1.5 --- MREBF-1 and MREBF-2 --- p.136 / Chapter 4.1.6 --- Human Zinc Regulatory Factor --- p.136 / Chapter 4.1.7 --- MREBP --- p.137 / Chapter 4.1.8 --- Aim of This Chapter --- p.138 / Chapter 4.2 --- Materials and Methods --- p.139 / Chapter 4.2.1 --- Materials --- p.139 / Chapter 4.2.1.1 --- Preparation of Nuclear Extract from Common Carp Liver Tissue --- p.139 / Chapter 4.2.1.2 --- Preparation of the Double-Stranded Oligonucleotides --- p.139 / Chapter 4.2.1.3 --- Binding Reaction of Protein and DNA --- p.141 / Chapter 4.2.1.4 --- Gel-Shift Mobility Electrophoresis --- p.142 / Chapter 4.2.1.5 --- Screening of Expression Library --- p.142 / Chapter 4.2.1.5.1 --- Preparation of Labeled DNA Probe --- p.142 / Chapter 4.2.1.5.2 --- Plating of the Library --- p.142 / Chapter 4.2.1.6. --- Isolation of Positive Clones In Vivo Excision --- p.143 / Chapter 4.2.2 --- Methods --- p.144 / Chapter 4.2.2.1 --- Gel Mobility-Shift Assays --- p.144 / Chapter 4.2.2.1.1 --- Preparation of Nuclear Extract from Common Carp Liver Tissue --- p.145 / Chapter 4.2.2.1.2 --- Preparation of the Double-Stranded Oligonucleotides --- p.145 / Chapter 4.2.2.1.3 --- Binding Reaction of Protein and DNA --- p.146 / Chapter 4.2.2.1.4 --- Gel-Shift Mobility Electrophoresis --- p.146 / Chapter 4.2.2.2 --- Screening of Expression Library --- p.146 / Chapter 4.2.2.2.1 --- Preparation of Labeled DNA Probe --- p.147 / Chapter 4.2.2.2.2 --- Plating of the Library --- p.148 / Chapter 4.2.2.2.3 --- Isolation of Positive Clones --- p.150 / Chapter 4.3 --- Results --- p.150 / Chapter 4.3.1 --- Gel Mobility-Shift Assays --- p.150 / Chapter 4.3.2 --- Expression Library Screening --- p.163 / Chapter 4.4 --- Discussion --- p.166 / Chapter 4.4.1 --- Gel Mobility-Shift Assays --- p.166 / Chapter 4.4.2 --- Expression Library Screening --- p.171 / Chapter 4.5 --- Conclusion --- p.172 / Chapter Chapter 5 --- Conclusion --- p.173 / Chapter 5.1 --- Conclusion --- p.173 / Chapter 5 2 --- Model of MT Gene Transcription --- p.174 / Chapter 5.3 --- Future Direction --- p.175 / references --- p.176
4

Mechanism of metallothionein gene regulation involving metal responsive element binding transcription factor-1 and its short-form variant in tilapia.

January 2008 (has links)
Au, Yee Man Candy. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 128-144). / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.iii / Acknowledgements --- p.v / List of Tables --- p.x / List of Figures --- p.xi / List of Abbreviations --- p.xiii / Chapter 1. --- Chapter One Introduction / Chapter 1.1 --- Homeostasis and detoxification of metal ions --- p.1 / Chapter 1.2 --- Biochemistry of metallothionein --- p.3 / Chapter 1.2.1 --- Structure of metallothionein --- p.4 / Chapter 1.2.2 --- Isoforms of metallothionein --- p.5 / Chapter 1.2.3 --- Roles of metallothionein --- p.6 / Chapter 1.2.4 --- Structure of metallothionein gene --- p.9 / Chapter 1.2.5 --- Metal responsive element (MRE) --- p.10 / Chapter 1.2.6 --- Regulation of MT gene --- p.11 / Chapter 1.3 --- Metal responsive element-binding transcription factor 1 (MTF-1) --- p.16 / Chapter 1.3.1 --- Structure of MTF-1 --- p.16 / Chapter 1.3.2 --- Target genes of MTF-1 --- p.18 / Chapter 1.4 --- Teleost MT and MTF-1 --- p.20 / Chapter 1.5 --- Tilapia --- p.26 / Chapter 1.6 --- Tilapia MT and MTF-1 --- p.26 / Chapter 1.7 --- Aims of study --- p.30 / Chapter 2. --- Chapter Two Materials and Methods / Chapter 2.1 --- Quantification of MTF-1 isoforms and MT mRNA levels in tilapia and Hepa-Tl cells by real-time PCR --- p.32 / Chapter 2.1.1 --- Heavy metal exposure on tilapia --- p.32 / Chapter 2.1.1.1 --- Animals --- p.32 / Chapter 2.1.1.2 --- Heavy metal exposure --- p.32 / Chapter 2.1.1.3 --- Total RNA extraction --- p.33 / Chapter 2.1.1.4 --- Reverse Transcription --- p.35 / Chapter 2.1.2 --- Heavy metal exposure on Hepa-Tl cells --- p.36 / Chapter 2.1.2.1 --- Cell Culture --- p.36 / Chapter 2.1.2.2 --- Metal treatment on Hepa-Tl cells --- p.37 / Chapter 2.1.3 --- SYBR green --- p.39 / Chapter 2.1.3.1 --- Primer Design --- p.39 / Chapter 2.1.3.2 --- Validation of cycling condition --- p.41 / Chapter 2.1.3.3 --- Determination of relative amount of target gene present in the samples --- p.43 / Chapter 2.1.3.4 --- Statistical analysis --- p.44 / Chapter 2.1.4 --- TaqMan probes --- p.44 / Chapter 2.1.4.1 --- Primer Design --- p.44 / Chapter 2.1.4.2 --- Validation of cycling condition --- p.45 / Chapter 2.2 --- Localization study of MTF-1 isoforms --- p.46 / Chapter 2.2.1 --- Amplification of the full length tilapia MTF-1 isoforms --- p.46 / Chapter 2.2.2 --- Preparation of Escherichia coli competent cells --- p.48 / Chapter 2.2.3 --- Transformation --- p.49 / Chapter 2.2.4 --- Confirmation of the insert of the ligation products --- p.50 / Chapter 2.2.5 --- Cloning of MTF-1-L and MTF-1-S gene into phrGFPII-1 vector --- p.51 / Chapter 2.2.6 --- Transient transfection of plasmids to Hepa-Tl cells --- p.54 / Chapter 2.2.7 --- Staining of the nucleus by Hoechst 33342 --- p.55 / Chapter 2.2.8 --- Metal treatment on Hepa-Tl cells --- p.55 / Chapter 2.3 --- Electrophoretic mobility shift assay (EMSA) --- p.56 / Chapter 2.3.1 --- Preparation of Hepa-Tl whole-cell protein extract --- p.56 / Chapter 2.3.2 --- In vitro transcription/translation of tilapia MTF-1 isoforms --- p.57 / Chapter 2.3.3 --- Annealing of the tiMREg oligonucleotides --- p.58 / Chapter 2.3.4 --- Labeling of the annealed tiMREg oligonucleotides --- p.58 / Chapter 2.3.5 --- Electrophoretic mobility shift assay --- p.59 / Chapter 3. --- Chapter Three Results / Chapter 3.1 --- Quantification of MTF-1 isoforms and MT mRNA levels in tilapia and Hepa-Tl cells by real-time PCR --- p.62 / Chapter 3.1.1 --- Validation of primers for real-time PCR --- p.62 / Chapter 3.1.2 --- Tissue distribution of MTF-1 isoforms in tilapia and Hepa-Tl cell-line --- p.63 / Chapter 3.1.3 --- Effect of metal treatment on MTF-1 isoforms and MT gene expression level in different tissues of tilapia and Hepa-Tl cell-line --- p.68 / Chapter 3.2 --- Localization study of MTF-1 isoforms --- p.82 / Chapter 3.2.1 --- Cloning of MTF-1 isoforms into phrGFPII-1 vector --- p.82 / Chapter 3.2.2 --- Transient transfection of phrGFPII-1 plasmids to Hepa-Tl cells --- p.82 / Chapter 3.3 --- Electrophoretic mobility shift assay (EMSA) --- p.96 / Chapter 4. --- Chapter Four Discussion / Chapter 4.1 --- Tissue distribution of MTF-1 isoforms --- p.104 / Chapter 4.2 --- Effect of metal stress on the mRNA expression level of MT and MTF-1 isoforms --- p.106 / Chapter 4.3 --- In vitro study of the localization of the MTF-1 isoforms --- p.114 / Chapter 4.4 --- DNA binding of MTF-1 synthesized by in vitro transcription/translation method --- p.121 / Chapter 4.5 --- Conclusion --- p.125 / Chapter 5. --- REFERENCES --- p.128
5

Regulation of zebrafish metallothionein gene expression by heavy metal ions.

January 2007 (has links)
Cheuk, Wai Ka. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 96-108). / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.iii / Acknowledgements --- p.v / Table of contents --- p.vi / List of Tables --- p.ix / List of Figures --- p.x / Abbreviations --- p.xii / Chapter CHAPTER 1 --- General introduction / Chapter 1.1 --- Metal Contaminations in the environment --- p.1 / Chapter 1.2 --- Biology of Heavy Metal Ions --- p.3 / Chapter 1.2.1 --- Essential and non-essential metal ions --- p.3 / Chapter 1.2.2 --- Toxicities and origins of heavy metal ions --- p.5 / Chapter 1.3 --- Monitoring Of Heavy Metal Contaminations In Aquatic Environment --- p.9 / Chapter 1.3.1 --- Monitoring in chemical approach --- p.9 / Chapter 1.3.2 --- Monitoring in biological approach: biomarkers --- p.11 / Chapter 1.4 --- Metallothionein (MT) --- p.12 / Chapter 1.4.1 --- Biological functions of MT and its regulation --- p.12 / Chapter 1.4.2 --- MT isoforms --- p.14 / Chapter 1.4.3 --- Mechanisms of MT gene regulation --- p.15 / Chapter 1.4.3.1 --- Zinc pool hypothesis --- p.20 / Chapter 1.4.3.2 --- Protein kinase cascade --- p.21 / Chapter 1.5 --- Metal responsive element (MRE) --- p.22 / Chapter 1.6 --- MRE-Binding Transcription Factor-1 (MTF-1) --- p.30 / Chapter 1.6.1 --- Structure of MTF-1 --- p.30 / Chapter 1.6.2 --- Physiological functions of MTF-1 --- p.32 / Chapter 1.6.3 --- The role of MTF-1 in MT gene regulation --- p.33 / Chapter 1.6.4 --- Regulation of MTF-1 by various heavy metals --- p.34 / Chapter 1.7 --- Zebrafish (Daino reio) --- p.36 / Chapter 1.8 --- Project aim --- p.37 / Chapter CHAPTER 2 --- Materials and Methods / Chapter 2.1 --- Cell Culture --- p.40 / Chapter 2.1.1 --- ZFL cell line --- p.40 / Chapter 2.1.2 --- SJD cell line --- p.41 / Chapter 2.2 --- Alarmar blue̐ưؤ M assay --- p.41 / Chapter 2.3 --- First strand cDNA synthesis --- p.42 / Chapter 2.3.1 --- Metal treatment of the SJD and ZFL cell lines --- p.42 / Chapter 2.3.2 --- Isolation of total RNA --- p.43 / Chapter 2.3.3 --- Quantification of mRNA by spectrophotometer --- p.43 / Chapter 2.3.4 --- Reverse Transcription --- p.44 / Chapter 2.4 --- Quantifications of mRNA levels by using real-time PCR technique --- p.44 / Chapter 2.4.1 --- Primer design --- p.44 / Chapter 2.4.2 --- PCR components and cycling condition --- p.45 / Chapter 2.4.3 --- Determination of relative amount of target gene present in the samples --- p.49 / Chapter 2.5 --- Cloning of zMT-II gene promoter and its transient expression studies --- p.50 / Chapter 2.5.1 --- Purification of genomic DNA --- p.50 / Chapter 2.5.2 --- Preparation of Escherichia coli competent cell --- p.51 / Chapter 2.5.3 --- PCR-Cloning of a 1.4 kb zMT-II gene promoter --- p.51 / Chapter 2.5.4 --- Purification of plasmid DNA --- p.53 / Chapter 2.5.5 --- Transient transfection of plasmid into SJD and ZFL cells --- p.54 / Chapter 2.5.6 --- Heavy metal treatments and measurement of luciferase activities --- p.54 / Chapter CHAPTER 3 --- Results / Chapter 3.1 --- Toxicities of various heavy metal ions --- p.56 / Chapter 3.2 --- Relative mRNA fold induction of zMT in SJD and ZFL cell lines --- p.59 / Chapter 3.3 --- The zMT-II gene and its induction by metal ions in zebrafish cell-lines --- p.63 / Chapter 3.4 --- MTF-1 mRNA levels in SJD and ZFL cell lines exposed to heavy metal ions --- p.74 / Chapter CHAPTER 4 --- Discussion / Chapter 4.1 --- Comparison of metal toxicities in the two cell lines studied --- p.78 / Chapter 4.2 --- zMT gene expression study --- p.80 / Chapter 4.2.1 --- zMT mRNA regulation by heavy metal ions in the two cell lines --- p.80 / Chapter 4.2.2 --- The potential use of MT regulation as exposure biomarker --- p.82 / Chapter 4.3 --- Structure of the zMT-II gene promoter region --- p.82 / Chapter 4.4 --- Metal responsiveness of zMT-II promoter --- p.84 / Chapter 4.5 --- Mechanism of MT gene expression and the MTF-1 mRNA inductions in SJD and ZFL cell lines --- p.86 / Chapter 4.6 --- Concluding Remarks --- p.93 / References --- p.96
6

Engineering of gene constructs for ectopic expression in transgenic fish.

January 2001 (has links)
by Yan Hiu Mei, Carol. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 114-126). / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.iii / Acknowledgements --- p.iv / Table of Contents --- p.v / List of Tables --- p.viii / List of Figures --- p.ix / Abbreviations --- p.xii / Chapter CHAPTER 1 --- TRANSGENIC TECHNOLOGY --- p.1 / Chapter 1.1 --- Transgenesis in animals --- p.1 / Chapter 1.2 --- Transgenic fish in toxicology --- p.4 / Chapter 1.2.1 --- Aquatic metal toxicity --- p.4 / Chapter 1.2.2 --- Environmental monitoring of aquatic metal toxicity --- p.5 / Chapter 1.2.3 --- Biomarkers --- p.6 / Chapter 1.3 --- Transgenics in aquaculture --- p.9 / Chapter 1.3.1 --- Revolution is needed in aquaculture --- p.9 / Chapter 1.3.2 --- Aquaculture potential of tilapia in China --- p.10 / Chapter 1.3.3 --- Endocrinology for fish growth --- p.12 / Chapter 1.3.4 --- Growth promotion by exogenous growth hormone in tilapia --- p.14 / Chapter 1.3.5 --- Accelerated growth in transgenic fish --- p.15 / Chapter 1.4 --- General principle in transgenic fish production --- p.16 / Chapter 1.5 --- Project aim --- p.22 / Chapter CHAPTER 2 --- ISOLATION AND CHARACTERIZATION OF ZEBRAFISH METALLOTHIONEIN GENE PROMOTER --- p.23 / Chapter 2.1 --- Introduction --- p.23 / Chapter 2.1.1 --- Metallothionein --- p.23 / Chapter 2.1.2 --- Biological functions --- p.24 / Chapter 2.1.3 --- Metallothionein gene regulations --- p.25 / Chapter 2.1.4 --- Metallothionein as biomarker for metal pollution --- p.26 / Chapter 2.2 --- Materials and methods --- p.28 / Chapter 2.2.1 --- General molecular biology techniques --- p.28 / Chapter 2.2.2 --- Sequences of PCR primers used --- p.31 / Chapter 2.2.3 --- Cloning zebrafish MT gene 5-flanking region --- p.31 / Chapter 2.2.4 --- Cloning zebrafish MT gene --- p.32 / Chapter 2.2.5 --- Cloning full length zMT gene --- p.33 / Chapter 2.2.6 --- Cell culture --- p.35 / Chapter 2.2.7 --- Transient transfection assay --- p.37 / Chapter 2.2.8 --- Electrophoretic mobility shift assay --- p.39 / Chapter 2.3 --- Results --- p.42 / Chapter 2.3.1 --- Zebrafish metallothionein gene --- p.42 / Chapter 2.3.2 --- Deletion analysis of zMT promoter by transient transfection assay --- p.48 / Chapter 2.3.3 --- Functional characterization of zebrafish metallothionein promoter --- p.57 / Chapter 2.4 --- Discussions --- p.61 / Chapter 2.4.1 --- Zebrafish MT gene --- p.61 / Chapter 2.4.2 --- Functional characterization of zebrafish MT promoter --- p.61 / Chapter CHAPTER 3 --- PREPARATION OF GENE CONSTRUCTS FOR TRANSFER IN ZEBRAFISH --- p.65 / Chapter 3.1 --- Introduction --- p.65 / Chapter 3.1.1 --- Zebrafish as model in toxicological studies --- p.65 / Chapter 3.1.2 --- Reporter gene system --- p.66 / Chapter 3.1.3 --- Transgenic reporter fish --- p.68 / Chapter 3.1.4 --- Gene transfer by electroporation in zebrafish --- p.68 / Chapter 3.1.5 --- Objective --- p.69 / Chapter 3.2 --- Materials and methods --- p.70 / Chapter 3.2.1 --- Design of gene constructs for ectopic expression in zebrafish --- p.70 / Chapter 3.2.2 --- Testing electroporation conditions for zebrafish --- p.72 / Chapter 3.3 --- Results --- p.73 / Chapter 3.4 --- Discussions --- p.76 / Chapter 3.4.1 --- Engineering gene constructs --- p.76 / Chapter 3.4.2 --- Applications of transgenic zebrafish --- p.79 / Chapter CHAPTER 4 --- GENE TRANSFER EXPERIMENTS ON TILAPIA --- p.82 / Chapter 4.1 --- Introduction --- p.82 / Chapter 4.2 --- Materials and methods --- p.85 / Chapter 4.2.1 --- Isolation of O. aureus growth hormone --- p.85 / Chapter 4.2.2 --- Engineering gene constructs for ectopic expression in tilapia --- p.86 / Chapter 4.2.3 --- Gene transfer in tilapia --- p.87 / Chapter 4.2.4 --- Screening transgenic tilapia --- p.89 / Chapter 4.3 --- Results --- p.91 / Chapter 4.3.1 --- Tilapia growth hormone --- p.91 / Chapter 4.3.2 --- Gene constructs for ectopic expression in tilapia --- p.94 / Chapter 4.3.3 --- Testing electroporation conditions --- p.96 / Chapter 4.3.4 --- PCR screening for transgenic fish --- p.97 / Chapter 4.4 --- Discussions --- p.101 / Chapter 4.4.1 --- Tilapia growth hormone --- p.101 / Chapter 4.4.2 --- Electroporation experiments on of tilapia eggs --- p.101 / Chapter 4.4.3 --- Improvements on gene construct design for tilapia --- p.104 / Chapter 4.4.4 --- Ethical and safety considerations --- p.106 / Chapter CHAPTER 5 --- REFERENCES --- p.114 / APPENDIX --- p.127

Page generated in 0.1017 seconds