• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Magnetic properties of nitrogen- doped carbon nanospheres

Dubazane, Makhosonke Berthwell 07 March 2013 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science Johannesburg September 2012 / Electron spin resonance (ESR) was used to characterize a suite of carbon nanospheres (CNS) samples with varying nitrogen concentrations at room temperature. The CNS were produced using two different reactors (vertical and horizontal) under different preparatory conditions. Resonance spectra of samples produced from the vertical reactor showed resonance lines- a narrow paramagnetic component, and broader component. They were attributed to nitrogen paramagnetic impurities and carrier spins, respectively. Samples produced in the horizontal reactor revealed stronger line spectra that were narrower and Dysonian in shape. The nitrogen content of the samples produced by the horizontal reactor was determined through ESR analysis which involves integration of the resonance peak, and normalizing to the mass of the sample. The relative g-shift was also measured by using a DPPH reference sample. Room temperature power saturation experiments were performed on samples produced from the horizontal reactor with the aim of estimating the spin relaxation times. Two samples from the horizontal reactor were further investigated at low temperatures (4 K- 320 K) at a constant microwave power. The resonance parameters investigated were linewidth, asymmetry ratio and amplitude, and possible spin-lattice relaxation mechanisms were investigated. The variation of the amplitude with temperature was investigated using two models: (1) a model based on lattice vibrations, and (2) a model based on nanographites assembly (considered interaction between carrier and localized spins). At low temperatures both models have amplitude that changes inversely with temperature in accordance with Curie law. At high temperatures (T > 200 K) a model based on nanographites assembly provide an alternative; it describes the rise in the signal amplitude in terms of thermally activated paramagnetic electrons from non-magnetic ground state to excited state at energy . Analysis of linewidth and asymmetry ratio data confirmed that the spin-lattice relaxation governed by thermal activated electrons is a dominant relaxation mechanism at high temperatures.
2

Neutron diffraction and ultrasonic studies of magnetic ordering in rare earths

Brits, George Hendrik Frederik 04 February 2014 (has links)
D.Phil. (Physics) / Please refer to full text to view abstract
3

Magnetic feedback and quantum oscillations in metals

Van Schyndel, André John January 1980 (has links)
A feedback technique is presented for the reduction of the Shoenberg magnetic interaction in metals. The method allows the spin splitting parameter g[sub c] for extremal orbits on the Fermi surface to be obtained from de Haas-van Alphen measurements, now essentially free from the oft-times severe distortions resulting from magnetic interaction. The feedback technique also offers several advantageous side effects, the most important one being a simple and reliable method for determining absolute amplitudes of de Haas-van Alphen oscillations. Explicit formulae are derived showing the dependence of several key observable quantities on the amount of magnetic feedback, and these formulae are found to be in good agreement with experiment. The technique is applied to the determination of g[sub c] for the [110] γ oscillations in Pb. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
4

A simple model for studying the gravitationally induced electric field inside a metal

Shegelski, Mark Raymond Alphonse January 1982 (has links)
If a metal object is placed in a gravitational field, .the nuclei and electrons in the metal will sink. This will produce a new charge distribution inside the metal. A modified charge distribution implies a modified electric field in the metal interior. This thesis investigates some possible physical processes which give rise to the gravitationally induced electric field inside a metal. To this end, a simple model of a metal is constructed. Comprising the model are ions, arranged on a differentially compressed lattice, and a gas of conduction electrons. An ion is represented by a nucleus and an electron which are confined together inside a hard, massless, spherical shell. The nucleus is treated as a point particle while the electron is represented by a wave function. The conduction electron constituent is modelled as a gas of non-interacting fermions which is subject to an external linear potential, The design of the model facilitates the investigation of two possible sources of the electric field: gravitationally induced ionic dipole moments, and the charge imbalance in the metal. To first order in g, only the first source matters, contributing approximately –Mg/q[sub=e] to the electric field, where M is the ionic mass, g is the acceleration due to gravity, and q[sub=e] is the electronic charge. The net gravitationally induced electric field is also found to be approximately -Mg/q[sub=e], / Science, Faculty of / Physics and Astronomy, Department of / Graduate
5

Reducing rare earth consumption in Nd₂Fe₁₄B magnets through controlled nanostructures

Hopkinson, David Mark January 2015 (has links)
No description available.
6

An investigation of the structural and magnetic properties of Ho substituted BiFeO3

Ncube, Mehluli 18 September 2012 (has links)
The doping of BiFeO3 with lanthanide elements like Ho, with a radius smaller than Bi, is ideal to improve the ferroelectric and magnetic properties of BiFeO3, which in principle can cause structural distortions of the lattice that improve the electrical and magnetic properties. In this work, we report on the temperature dependence of the structural and magnetic properties of Ho substituted BiFeO3 (BHFO) samples, which have been investigated by X-ray diffraction (XRD) and Mössbauer spectroscopic techniques. The XRD and Mössbauer measurements were done at room temperature on the as-synthesized BHFO samples and after annealing the samples in Argon up to 1073 K. The resultant XRD patterns have shown that BHFO is of rhombohedral R3m space group, with a majority Bi25FeO90 phase and a minority Bi2Fe4O9 phase. These two phases are attributed to the local stoichometry fluctuations in BiFeO3 (BFO). A new phase was evident in the XRD spectra after annealing the sample between 673 – 873 K; this has been assigned to the octahedral B-site of Fe3O4. The Mössbauer spectra were characterized by broadened features and the magnetic hyperfine splitting patterns were indicative of magnetic ordering mostly probably screwed or slightly antiferromagnetic ordering. The spectra were fitted with two symmetric sextets (S1 & S2) which were present in all annealed samples, a symmetric sextet (S3) which was observable at annealing temperatures greater than 673 K, a Lorentzian doublet (D) and a single line (SL) which were present in all spectra. The extracted hyperfine parameters of sextet S1 are consistent with those of rhombohedral BiFeO3 and are characteristic of magnetically ordered Fe3+. At TA > 673 K, a third sextet S3 was assigned to the high symmetry cubic spinel phase. The paramagnetic doublet D was attributed to the Bi25FeO40 phase and the singlet line SL to the Bi2Fe4O9 phase which has been observed previously in the studies of BiFeO3 and other BiFeO3 doped systems. The isomer shift and quadrupole splitting values of the paramagnetic doublet D corresponds to an oxidation state of Fe3+, while the isomer shift of S1 remained fairly constant up to TA = 623 K then decreased gradually after the appearance of S3 indicating an increase of the s-electron density at the Fe nucleus. The quadrupole splitting of S2 showed no systematic change with annealing temperature, however at TA > 623 K this parameter changed dramatically to a negative value with a slightly larger magnetic field. The distribution of the isomer shift and the difference in the quadrupole splitting values and signs are due the variation in the angles between the principal axis of the electric field gradient (EFG) and the spin direction. The hyperfine fields of S1 and S2 remained fairly constant for all measured samples, however at TA > 623 K the hyperfine field of S3 showed a slight increase which could be due to Ho being substituted at the Fe site in BiFeO3. In addition, in-situ Mössbauer measurements at temperatures in the range 300 – 748 K were made on the BHFO samples. The room temperature spectrum showed similar features as observed on the annealing series of measurements. The hyperfine magnetic fields of the two sextet components (S1 and S2) decreased with increasing temperature and finally collapsed at T > 588 K. The hyperfine fields of both the S1 and S2 components decreased systematically with temperature to a field distribution just below the Néel temperature. From our measurements, we estimated the Néel temperature for BHFO to be in the range 598 – 617 K. The isomer shift for all spectral components showed a linear decrease with increasing temperature which closely followed the usual second order Doppler shift variation with temperature. The S1 and S2 spectral components present at room temperature disappeared just before the Néel temperature resulting in the area fraction of the paramagnetic doublet D dominating the spectrum. From the site populations, an average Debye temperature (θD) was estimated to be 240 ± 81 K for BHFO which is lower than the value of 340 ± 50 K cited for BiFeO3.
7

Direct synthesis of magnetic bimetallic alloy nanoparticles from organometallic precursors and their applications

Meng, Zhengong 09 May 2016 (has links)
1.1\xMagnetic nanoparticles (NPs) with sizes ranging from 2 to 20 nm in diameter represent an important class of artificial nanostructured materials, since the NP size is comparable to the size of a magnetic domain. They have potential applications in data storage, catalysis, permanent magnetic nanocomposites, and biomedicine.;1.2\xTo begin with, a brief overview on the background of Fe-based bimetallic NPs and their applications for data-storage and catalysis was presented in Chapter 1.;1.3\xIn Chapter 2, L10-ordered FePt NPs with high coercivity were directly prepared from a novel bimetallic acetylenic alternating copolymer P3 by a one-step pyrolysis method without post-thermal annealing. The chemical ordering, morphology and magnetic properties were studied. Magnetic measurements showed that a record coercivity of 3.6 T (1 T = 10 kOe) was obtained in FePt NPs. By comparison of the resultant FePt NPs synthesized under Ar and Ar/H2, the characterization proved that the incorporation of H2 would affect the nucleation and promote the growth of FePt NPs. The L10 FePt NPs were also successfully patterned on Si substrate by nanoimprinting lihthography (NIL). The highly ordered ferromagnetic arrays on a desired substrate for bit-patterned media (BPM) were studied and promised bright prospects for the progress of data-storage.;1.4\xFuthermore, we also reported a new FePt-containing metallopolymer P4 as the single-source precursor for metal alloy NPs synthesis, where the metal fractions were on the side chain and the ratio could be easily controlled. This polymer was synthesized from random copolymer poly(styrene-4-ethynylstyrene) PES-PS and bimetallic precursor TPy-FePt ([Pt(4-ferrocenyl-(NN̂N̂))Cl]Cl) by Sonogashira coupling reaction. After pyrolysis of P4, the stoichiometry of Fe and Pt atoms in the synthesized NPs (NPs) is nearly close to 1:1, which is more precise than using TPy-FePt as precursor. Polymer P4 was also more favorable for patterning by high throughout NIL as compared to TPy-FePt. Ferromagnetic nanolines, potentially as bit-patterned magnetic recording media, were successfully fabricated from P4 and fully characterized.;1.6\xBesides, a bimetallic complex TPy-FePd-2 was prepared and used as a single-source precursor to synthesize ferromagnetic FePd NPs by one-pot pyrolysis. The resultant FePd NPs have a mean size of 19.8 nm and show the coercivity of 1.02 kOe. In addition, the functional group (-NCMe) in TPy-FePd-2 was easily substituted by a pyridyl group. A random copolymer PS-P4VP was used to coordinate with TPy-FePd-2, and the as-synthesized polymer made the metal fraction disperse evenly along the flexible chain. Fabrication of FePd NPs from the polymers was also investigated, and the size could be easily controlled by tuning the metal fraction in polymer. FePd NPs with the mean size of 10.9, 14.2 and 17.9 nm were prepared from the metallopolymer with 5 wt%, 10 wt% and 20wt% of metal fractions, respectively.;1.7\xIn Chapter 4, molybdenum disulfide (MoS2) monolayers decorated with ferromagnetic FeCo NPs on the edges were synthesized through a one-step pyrolysis of precursor molecules in an argon atmosphere. The FeCo precursor was spin coated on the MoS2 monolayer grown on Si/SiO2 substrate. Highly-ordered body-centered cubic (bcc) FeCo NPs were revealed under optimized pyrolysis conditions, possessing coercivity up to 1000 Oe at room temperature. The FeCo NPs were well-positioned along the edge sites of MoS2 monolayers. The vibration modes of Mo and S atoms were confined after FeCo NPs decoration, as characterized by Raman shift spectroscopy. These MoS2 monolayers decorated with ferromagnetic FeCo NPs can be used for novel catalytic materials with magnetic recycling capabilities. The sizes of NPs grown on MoS2 monolayers are more uniform than from other preparation routines. Finally, the optimized pyrolysis temperature and conditions provide receipts for decorating related noble catalytic materials.;1.8\xFinally, Chapters 5 and 6 present the concluding remarks and the experimental details of the work described in Chapters 2-4.
8

Investigation of the Electronic Structures of Heterobimetallic Mn/Fe Oxidases: A Computational Study on the R2-like Ligand Binding Oxidases

Gan, Yunqiao January 2021 (has links)
No description available.
9

Synthesis and characterisation of electronically active species

Mahenthirarajah, Thushitha January 2009 (has links)
An exploration of some early transition metal (oxy) fluoride systems using solvothermal techniques has been carried out. 30 novel materials have been synthesised, which fall into three classes based on different metal centres; vanadium (21), molybdenum (5) and niobium (4). Some of these also contain secondary metal centres, namely copper (22) and zinc (1). Simultaneously, the relationship between the SHG values and the crystal structures of the hilgardites family members Pb₂B₅O₉Cl, Pb₂B₅O₉Br, Sr₂B₅O₉Cl and Ba₂B₅O₉Cl was investigated. In particular, the Pb–containing members of the hilgardite family of borate halides exhibit an abnormally large non–linear optical response, which was analysed based on neutron powder diffraction. Using solvothermal synthesis in HF–containing media, 21 novel vanadium oxyfluorides containing interesting structural features, were synthesised at 160˚C using a range of organo-amine compounds as a ligand, template, linker or structure directing agent. The architectures of the crystal structures may be categorised into; four clusters including monomeric vanadium units, five clusters including vanadium dimers, eight 1–D chains, two 2–D layers and two 3–D networks. ‘Composition–space’ diagrams with three components were used to study the effect of stoichiometry changes of reactants and to map out the crystallisation fields. The combination of early (Nb⁵⁺, Mo⁶⁺) and late (Cu²⁺) transition metals with different organo-amines produced nine novel compounds incorporating monomers, chains and 2– D interpenetrated networks. The chains and layers were synthesised from a systematic series of reactions at 160˚C and can be subdivided into four pairs, the topologies of which are essentially unique to each ligand, containing in each case a Cu–based cationic species, but alternately either [MoO₂F₄]²⁻ or [NbOF₅]²⁻, in an isomorphous manner, as the anionic moiety. The overall structures of these materials reflect the influence of the organo–amine ligands. The materials have been studied for their magnetic properties and characterised by thermogravimetric analysis, Rietveld refinement and elemental analysis where relevant.
10

CARBON-13 NMR STUDIES OF MULTICYCLIC LACTAMS.

BABAQI, ABDULLA SALEH. January 1982 (has links)
Carbon-13 nuclear magnetic resonance is a very useful spectroscopic technique in studying organic compounds, especially when the proton NMR does not provide much information. In this study of multicyclic lactams, different NMR techniques were used: broadband decoupled spectra, single-frequency off-resonance decoupling (SFORD), and the attached proton test (APT). Lanthanide shift reagents and lanthanide relaxation reagents were also used. Almost all the carbon-13 resonances of mono-, bi-, and polycyclolactams were unambiguously assigned. The most powerful method in the assignments was based on the use of the lanthanide induced shifts (LIS) which confirmed the assignments qualitatively and quantitatively. The quantitative confirmation comes from the calculations of LIS and their comparison with the observed shifts. The carbon-13 chemical shielding of the studied lactams was analyzed and compared with analogous compounds. The results presented provide a consistent picture and the major influences in the trends of the ¹³C chemical shifts. However, no empirical relationships were derived for this series of compounds. The solution conformations of most of these lactams have been investigated using the shifts induced in their carbon-13 NMR by Yb(dpm)₃. These conformations were compared with structures obtained from X-ray data and MINDO/3 calculations. The structural analyses of ε-caprolactam and 3-azabicyclo[4.3.1]decan-4-one showed that these molecules have at least two conformations in solution. The LIS structural analyses were confirmed by using ¹³C T₁ relaxation times in Gd(dpm)₃ and Gd(fod)₃ relaxation reagents. The different contributions to the ¹³C NMR lanthanide induced shifts (LIS) were studied with emphasis in determining the importance of the ligand pseudocontact contribution. This was found to be important, especially in carbons in proximity to the complexation site.

Page generated in 0.1023 seconds