• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 7
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Index of refraction of nickel at high temperatures

Wolley, Elden Duane. January 1953 (has links)
Call number: LD2668 .T4 1953 W57 / Master of Science
2

Optical properties and mechanical stress in cubic boron nitride and diamond

Erasmus, Rudolph Marthinus 19 March 2013 (has links)
A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy / Raman and photoluminescence (PL) spectroscopy techniques were used to investigate the mechanical properties of diamond and cubic boron nitride (cBN) by optical means. Both these materials have extreme mechanical properties that make them the material of choice for many industrial applications, ranging from cutting and grinding to wire-drawing dies. The results obtained on single crystal diamond, polycrystalline diamond (PCD) and cBN are summarised below. Micro-Raman and photoluminescence (PL) spectroscopy were used to map the threedimensional (3D) stress and deformation distributions surrounding a plastic impression made in a synthetic, type Ib single crystal diamond. Using data from the Raman peak position, a 3D map of the stress contours surrounding the impression was generated, while the Raman width data yielded a map of the plastic deformation volume. The stress contours compare favorably with the resolved shear stress contours calculated for diamond. PL intensity maps of the zero phonon line (ZPL) associated with the [N-V]– defect centre at 1.945eV provide images of the extent of vacancy formation and movement during the impression process. Data concerning the position and width of the ZPL correspond well with the Raman results. Polycrystalline diamond (PCD) tools commonly consist of a PCD layer sintered onto a cobalt-tungsten carbide (Co-WC) substrate. These tools are used in diverse applications and both the magnitude and distribution of the stresses in the PCD layer affect tool behavior. These stresses in sample drillbits were investigated by means of micro-Raman spectroscopy. Cyclic annealing of a sample drillbit to 600 oC shows that the tool properties are retained after 5 cycles, while similar cycling to 800 oC resulted in a permanent decrease of the average surface compressive stress. This implies a reduction in the drillbit’s ability to resist crack formation and propagation and is thus a degradation of the tool properties. The method of Raman mapping of stress and deformation in diamond was also applied to single crystals of cBN. Indentations on cubic boron nitride (cBN) crystals and polycrystalline cubic boron nitride (PcBN) composites were mapped and the shifts of the cBN Raman lines from their unstressed positions used to quantify the residual stresses in the boron nitride due to the deformation brought about by the indentation. These were found to be of the order of 1 GPa. vi These measurements illustrated for the first time the use of Raman spectroscopy to study residual stresses in boron nitride. Defects in cBN were studied using photoluminescence spectroscopy at low temperature (< 10 K) of two types of cBN irradiated at ambient temperature with 1.9 MeV electrons. All the samples were small (<1 mm diameter) single crystals of cBN. Three defect centres (with narrow lines at 2.28 eV, 2.15 eV and 1.98 eV) were introduced in both the amber-coloured and blackbrown coloured samples by the irradiation. The amber coloured sample also showed a defect centre (at 1.65 eV) that is present before and after irradiation. Line shape analysis of the zero phonon lines of all three irradiation-induced centres showed that the lines are predominantly Gaussian in character, suggesting that linetype defects such as dislocations are a prevalent characteristic of these crystals. Raman spectroscopy of cBN single crystals as a function of temperature was performed over a wide temperature range from 4 K to 1373 K. The low temperature measurements extended the data previously reported in literature, as this data ranged from room temperature upwards. It was concluded from the shift of Raman peak position with temperature that both linear expansion and anharmonic effects were required to adequately account for the observed data. This is in agreement with previously published findings. Both 3- and 4-phonon processes were required to account for the observed linewidths as a function of temperature, again in agreement with literature. The results presented here and in the associated journal publications illustrate clearly how optical spectroscopy techniques can serve as non-destructive characterisation tools for the mechanical properties of ultra-hard materials.
3

Dependence of surface plasmon polaritons on the geometry of periodic metallic nanostructures and Its application on biosensing. / 表面等離子體激元對於週期性金屬納米結構幾何形狀的依賴性及其在生物傳感中的應用 / CUHK electronic theses & dissertations collection / Dependence of surface plasmon polaritons on the geometry of periodic metallic nanostructures and Its application on biosensing. / Biao mian deng li zi ti ji yuan dui yu zhou qi xing jin shu na mi jie gou ji he xing zhuang de yi lai xing ji qi zai sheng wu chuan gan zhong de ying yong

January 2012 (has links)
由於表面等離子體激元可以將電磁場限制在金屬表面,從而產生強烈的場強增強效果,因此在納米光子學和生物光子學方面具有廣泛的應用價值,其中包括高性能發光二級管、光伏電池、超高分辨率光學成像和超靈敏分子檢測等。尤其在單分子和醫學診斷方面,基於表面等離子體共振的生物傳感器獲得了越來越多的青睞。本論文包括兩部份。第一部份著重討論二維週期性洞陣列的表面等離子體特性,而第二部份則是研究這種洞陣列結構在表面等離子體共振傳感方面的應用。 / 在第一部份中,表面等離子體模式被分為非簡並模式(m,O) 和簡並模式(m,±n)兩種情況分別加以討論。首先,結合實驗結果和理論模型,我們對非簡並模式的衰減壽命和激發效率進行了研究。通過光干涉光刻法和薄膜沉積技術,一系列不同幾何結構的洞陣列樣品被製備出來,且這些樣品具有很高的重複性。利用角分辨色散關係進行模式識別以及確定這些模式的衰減壽命和激發效率。通過調整起偏器和檢偏器的相對方向,表面等離子體模式的非輻射和輻射衰竭均可加以研究。結果發現,衰減壽命強烈依賴於單洞的幾何結構,而且這種行為可以用簡單的靜電模型并考慮高階修正加以解釋。從非輻射衰減和輻射衰減平衡的角度出發,激發效率對幾何結構和共振波長的依賴性也可以理解。對於簡并模式,由於存在稱合,對稱模式和反對稱模式分別被p 偏振激發和S偏振激發。它們的對稱性和對於衰減壽命和共振波長的修正可以用干涉法和模式耦合理論來理解。最後,利用多模耦合方程,我們對色散關係圖譜隨著洞深度增加而演化的情況也進行了探討。 / 第二部份對基於表面等離子體共振的生物傳感器與陣列幾何結構的關係進行了研究。結果發現,激發效率和衰減壽命對表面等離子體共振傳感器的分辨率都起到了關鍵性作用。在共振中,峰值高度和帶寬主要由表面等離子體的衰減速率控制。較低的衰減速率導致較清晰的峰值線型,從而產生較高的傳感器分辨率。因此,通過調整陣列的幾何結構以產生非常低得輻射衰減速率,表面等離于體共振傳感器的品質因數可高達104.8/RIU ,這已經超過了基於梭鏡和納米粒子對應器件的性能表現。 / Surface plasmon polaritons (SPPs) generate a strong localized electromagnetic field on metal surface and thus are promising for nano- and bio-photonics including high performing light-emitting diodes and photovoltaic cells, super-high resolution optical imaging, ultra-high sensitive bimolecular detection, etc. In particular, the application of SPPs on surface plasmon resonance (SPR) biosensor has drawn much more attention recently because of the attempt to realize single molecule detection in medical diagnosis. / This thesis contains two parts. The first part focuses on studying the basic plasmonic properties of two-dimensional periodic hole arrays while the second part concentrates on the application of hole arrays on SPR sensing. / In the first part, SPPs modes on hole arrays are classified into nondegenerate mode (m, 0) and degenerate mode (m, ±n). For nondegenerate mode, its decay lifetime and generation efficiency are studied both experimentally and theoretically. By combining interference lithography and thin film deposition, a set of arrays with a wide range of geometry has been fabricated with high reproducibility. The dispersion relations of arrays are studied by angle-dependent reflectivity for mode identification and detenninations of SPP decay lifetime and generation efficiency. In particular, through orienting the polarization of the specular reflection either parallel or orthogonal to that of the incidence, we can access both the nonradiative and radiative decays of SPPs at different resonance wavelengths. As a result, it is found that decay lifetime is strongly dependent on the geometry of single hole and its behaviors can be understood by using a simple quasi-static model taking into account of the higher order correction as well as numerical simulation deduced by finite-difference timedomain. The dependence of generation efficiency on hole geometry or resonance wavelength can be understood in tenns of trade-off between nonradiative and radiative decay rates. Once these two decay rates equals to each other, the optimum generation efficiency is realized and the field enhancement gets the maximum. And the optimum parameters can be achieved by adjusting the hole geometry or the resonance wavelength. For degenerate mode, due to the coupling between (m, +n) and (m, -n) modes, a symmetric and an anti-symmetric modes are excited under pand s-polarized excitation, respectively. Their symmetries and modifications to the decay lifetime and resonance wavelength can be understood by using the interference method and coupled mode theory. Finally, generalized coupled mode equations are employed to know about the evolution of dispersion relation as hole depth increases. / The dependence of SPR biosensor on the generation and decay of SPPs are studied in the second part. Both the generation efficiency and decay lifetime of SPPs are found to be critical in governing the resolution of SPR biosensor. In SPR, the peak height and linewidth are primarily controlled by the decay rate of SPPs. Lower decay rate leads to sharper peak profile, which results in higher SPR resolution. Therefore, by tailoring the geometry of hole arrays to achieve a very low radiative decay rate, a SPR biosensor with figure of merit (FOM) reaching l04.8/RIU can be realized, which surpasses those of prism and nanoparticle counterparts. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Zhang, Lei = 表面等離子體激元對於週期性金屬納米結構幾何形狀的依賴性及其在生物傳感中的應用 / 張磊. / "November 2011." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 116-125). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Zhang, Lei = Biao mian deng li zi ti ji yuan dui yu zhou qi xing jin shu na mi jie gou ji he xing zhuang de yi lai xing ji qi zai sheng wu chuan gan zhong de ying yong / Zhang Lei. / Chapter Chapter1 --- Introduction --- p.1 / Chapter Chapter2 --- Theoretical Background --- p.7 / Chapter 2.1 --- Maxwell's equations --- p.7 / Chapter 2.2 --- Classic electromagnetic theory for dielectric properties of matter --- p.9 / Chapter 2.3 --- Surface plasmon polaritons at the dielectric/metal interface --- p.11 / Chapter 2.4 --- Excitation of surface plasmon polaritons --- p.16 / Chapter 2.4.1 --- Prism coupling --- p.17 / Chapter 2.4.2 --- Grating coupling --- p.17 / Chapter 2.5 --- lones calculus --- p.19 / Chapter 2.6 --- Finite-difference time-domain method --- p.22 / Chapter Chapter 3 --- Sample Preparation --- p.25 / Chapter 3.1 --- Interference lithography --- p.25 / Chapter 3.1.1 --- Substrate preparation --- p.26 / Chapter 3.1.2 --- Exposure --- p.27 / Chapter 3.1.3 --- Pattern development --- p.30 / Chapter 3.2 --- Thin film deposition --- p.30 / Chapter Chapter 4 --- Experimental Setups and Calibration --- p.33 / Chapter 4.1 --- Experimental setup for measuring dispersion relation --- p.33 / Chapter 4.2 --- Experimental setup calibration --- p.35 / Chapter 4.2.1 --- Calibration of spectrometer --- p.36 / Chapter 4.2.2 --- Calibration of movement stages --- p.38 / Chapter 4.3 --- Data presentation for dispersion relation --- p.40 / Chapter 4.4 --- Summary --- p.41 / Chapter Chapter 5 --- Understanding of Fundamental Properties of SPPs --- p.43 / Chapter 5.1 --- Excitation of SPPs on 2D hole arrays --- p.44 / Chapter 5.2 --- Properties of non degenerate modes and theoretical explanation --- p.53 / Chapter 5.2.1 --- Dependence of lifetime on hole geometry and theoretical explanation --- p.55 / Chapter 5.2.2 --- Dependence of generation efficiency on hole geometry and theoretical explanation --- p.63 / Chapter 5.3 --- Properties of degenerate modes and theoretical explanation --- p.70 / Chapter 5.3.1 --- Dependence of properties of degeneration modes on hole geometry by FDTD --- p.72 / Chapter 5.3.1.1 --- (0, ±l)[subscript s,a] modes --- p.72 / Chapter 5.3.l.2 --- (-1, ±l)[subscript s,a] modes --- p.76 / Chapter 5.3.2 --- Understanding of excitation of degenerate modes by using interference method --- p.79 / Chapter 5.3.3 --- Understanding of coupling between degenerate modes by using coupled mode theory --- p.85 / Chapter 5.4 --- Evolution of dispersion relation as hole depth increases --- p.90 / Chapter 5.5 --- Summary --- p.95 / Chapter Chapter 6 --- Surface Plasmon Resonance Based Label Free Biosensor --- p.98 / Chapter 6.1 --- Basics of surface plasmon resonance (SPR) based biosensor --- p.98 / Chapter 6.2 --- State-of-the-art SPR biosensor --- p.101 / Chapter 6.3 --- SPR biosensor by using 2D metallic hole arrays --- p.102 / Chapter 6.4 --- Summary --- p.111 / Chapter Chapter 7 --- Conclusions --- p.112 / References --- p.116 / Publications --- p.126
4

Experimental and theoretical studies of the optical properties of periodic metallic nanostructures. / 週期性金屬鈉米結構光學特性的實驗和理論研究 / CUHK electronic theses & dissertations collection / Experimental and theoretical studies of the optical properties of periodic metallic nanostructures. / Zhou qi xing jin shu na mi jie gou guang xue te xing de shi yan he li lun yan jiu

January 2009 (has links)
By combining experiment and theory, we believe our study shed light on developing a new method for well investigating and controlling the different plasmonic modes and open their way for some great applications in biology, chemistry and photonics. / Finally, this thesis presents an approach to quantitatively evaluate the SP-mediated light emission. Based on this consideration, efforts are taken to find the temperature effect of SP on the light emission in semiconductor. On metal/ZnO system, a more realistic picture for the light emission is depicted by experimentally measuring the temperature-dependent photoluminescence and theoretically calculating the Purcell enhancement factor. The increasing plasmonic density of states with the lower temperature has been regarded as being responsible for the enhanced light emission. / Firstly, studies are performed on finding an in-depth understanding into the optical properties of two-dimensional (2D) metallic nano-cavity structure (grating). Structures are fabricated by interference lithography and thin film techniques. Grating geometries can be easily tuned by using these versatile techniques with high reproducibility and precision. Plasmonic dispersion in the 2D grating has been mapped out by angle-dependent reflectivity measurements. Two particular nanostructures, i.e., nano-bottle array and elliptical hole array, have been chosen to investigate the dependence of plasmonic properties on geometries change. Theories are also put forward to understand the origin and electromagnetic properties of the obtained plasmonic modes. / Surface plasmons (SP), the collective oscillations of the conduction electrons between the metal/dielectric interface, strongly influence the optical properties of metallic nanostructures and are of great interest for future photonic devices. Here, this thesis mainly focuses on the experimental and theoretical investigations on the optical properties of the metallic periodic nanostructures. / With an understanding into the different plasmonic properties of the metallic nanostructures, researches are then undertaken to explore how this associated electromagnetic field interacts with the molecules adsorbed onto a sample surface. The distinct and strong correlation between the plasmonic modes and surface enhanced Raman scattering (SERS) is verified on the one-dimensional silver grating. In particular, the detailed analysis of the enhancement factor from surface plasmons excitation and de-excitation process in SERS has been performed. On the other hand, the technique used to fabricate the controllable "hot spot" for enhancing Raman scattering has been introduced on the 2D metallic grating. Complemented by the theoretical simulation, the conditions for optimizing SERS enhancement effect are proposed. / Li, Jia = 週期性金屬鈉米結構光學特性的實驗和理論研究 / 李佳. / Adviser: Ong Hock Chun. / Source: Dissertation Abstracts International, Volume: 71-01, Section: B, page: 0388. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 135-144). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / Li, Jia = Zhou qi xing jin shu na mi jie gou guang xue te xing de shi yan he li lun yan jiu / Li Jia.
5

Plasmonic spectroscopy of metallic nanostructures. / 金屬納米結構的等離子體光譜 / CUHK electronic theses & dissertations collection / Plasmonic spectroscopy of metallic nanostructures. / Jin shu na mi jie gou de deng li zi ti guang pu

January 2008 (has links)
I believe that my research work on the plasmonic spectroscopy of metallic nanostructures has provided an in-depth fundamental understanding of the localized surface plasmon resonance and will have a number of implications for the applications of metallic nanostructures in optics, optoelectronics, and biotechnology. / I will first describe my studies on the plasmonic properties of metallic nanostructures. Specific approaches of modifying the sizes and shapes of Au nanorods have been developed for tailoring their plasmonic properties, including surface plasmon wavelength, absorption, scattering, and extinction cross sections. Single-particle dark-field imaging and spectroscopy have proved that the scattering intensity of overgrown nanorods is larger than that of shortened nanorods from the same starting nanorods. Finite-difference time-domain (FDTD) calculations further show that the scattering-to-extinction ratio increases linearly as a function of the diameter of Au nanorods with a fixed aspect ratio. To obtain a deep understanding on the shape dependence of the localized surface plasmon resonance, I have emplyed FDTD on both Au nanorods and Au nanobipyramids. The results show that, when excited at their LSP wavelengths, Au nanobipyramids exhibit a maximal electric field intensity enhancement that is 3--6 times that of Au nanorods. Au nanorods have been further assembled into chains (end-to-end) and stacks (side-by-side). FDTD calculations have been performed on both Au nanorod chains and stacks with varying gap distances to obtain the dependence of the plasmon shift on the gap distance, which is then used as a plasmonic ruler to estimate the gap distance between assembled nanorods. Moreover, dye--Au nanorod hybrid nanostructures have also been successfully fabricated for the study of the coupling between the transition dipole resonance and the plasmonic resonance. The coupling-induced plasmon shift is found to be strongly dependent on molecular properties, the dye concentration in solutions, and the spacer thickness between dye molecules and the surface of Au nanorods. The coupling can be switched off by means of laser-induced photodecomposition of dye molecules. / Next, I will present my studies on the applications of metallic nanostructures. A SERS substrate has been constructed by assembling silver nanoparticles along silica nanofibers. The enhancement factors are found to be 2 x 10 5 for 4-mercaptobenzoic acid and 4-mercaptophenol, and 7 x 10 7 for rhodamine B isothiocyanate. A novel plasmonic optical fiber device has further been fabricated to detect small changes in the local dielectric environment. For individual Au nanorods, the index sensitivity and figure of merit (FOM) are found to be linearly dependent on the longitudinal plasmon resonance wavelength and reach 200 nm/RIU and 3.8, respectively. For nanorod ensembles, the index sensitivity and FOM of the longitudinal plasmon resonance are found to be 138 nm/RIU and 1.2, respectively. / The study of the plasmonic spectroscopy of metallic nanostructures is of great interest in nanoscale optics and photonics. Metallic nanostructures exhibit rich optical and electrical properties due to their localized surface plasmons (LSPs, collective charge density oscillations that are confined to metallic nanostructures). They can be widely used in a variety of application areas, such as surface-enhanced Raman scattering (SERS), plasmonic sensing, and metal enhanced fluorescence (MEF). In this thesis, a systematic study on the plasmonic spectroscopy of metallic nanostructures has been presented, both theoretically and experimentally. / Ni, Wei hai = 金屬納米結構的等離子體光譜 / 倪衛海. / Adviser: Jianfang Wang. / Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3580. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 135-154). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307. / Ni, Wei hai = Jin shu na mi jie gou de deng li zi ti guang pu / Ni Weihai.
6

Numerical simulation of structural, electronic and optical properties of transition metal chalcogenides

Rugut, Elkana Kipkogei January 2017 (has links)
A dissertation submitted to the Faculty of Science University of the Witwatersrand, in partial fulfilment of the requirements for the degree of master of science (MSc) School of physics, University of Witwatersrand, 2017. / Intensive study on structural, electronic and optical properties of bulk transition metal dichalcogenides and dipnictogenides (MX2; where M = V, Nb and X = S, Se, Te, P) was undertaken. A relative stability test was done to determine the most stable ground state configuration via calculation of total ground state energy and volume which was fitted to the third order Birch-Murnaghan equation of state to extract lattice parameters. Cohesive energies of the above mentioned MX2 compounds and their elemental solids were then computed from which formation energies were acquired based on their respective equations of reaction between reactants and product. Its significance was to aid in determining if a material is energetically stable. Elastic constants were predicted from which mechanical properties i.e bulk, Young’s and shear moduli and consequently Poisson’s ratio were resolved by feeding the stiffness matrix onto online elastic tensor analysis tool which facilitated verification of their mechanical stability based on the well-known Born stability conditions which varies from one crystal system to another, at a later stage phonon dispersion curves were plotted after performing phonon calculation based on phonopy code to verify if the materials of concern are dynamically stable. After a material had fulfilled all the above stability tests, its structural study was initiated using various functionals. Functional that described best the structural properties of each individual compound considered was then applied in exploring its electronic and optical properties whose motivation was to find out the most stable phase as well as gauge if these materials could be used in various fields that suits their mechanical and optical properties. Furthermore, from carefully calculated optical spectra, plasma frequencies were analyzed which indicated the possibility of applying a material in plasmonic related fields. In addition to above, other factors to be considered when selecting a given electrode material that are crucial for optoelectronics are good chemical and thermal stabilities, high transparency and excellent conductivity. / XL2018
7

Plasmonic effects upon optical trapping of metal nanoparticles

Dienerowitz, Maria January 2010 (has links)
Optical trapping of metal nanoparticles investigates phenomena at the interface of plasmonics and optical micromanipulation. This thesis combines ideas of optical properties of metals originating from solid state physics with force mechanism resulting from optical trapping. We explore the influence of the particle plasmon resonance of gold and silver nanospheres on their trapping properties. We aspire to predict the force mechanisms of resonant metal particles with sizes in the Mie regime, beyond the Rayleigh limit. Optical trapping of metal nanoparticles is still considered difficult, yet it provides an excellent tool to investigate their plasmonic properties away from any interface and offers opportunities to investigate interaction processes between light and nanoparticles. Due to their intrinsic plasmon resonance, metal nanoparticles show intriguing optical responses upon interaction with laser light. These differ greatly from the well-known bulk properties of the same material. A given metal nanoparticle may either be attracted or repelled by laser light, only depending on the wavelength of the latter. The optical forces acting on the particle depend directly on its polarisability and scattering cross section. These parameters vary drastically around the plasmon resonance and thus not only change the magnitude but also the direction and entire nature of the acting forces. We distinguish between red-detuned and blue-detuned trapping, that is using a trapping wavelength shorter or longer than the plasmon resonance of the particle. So far optical trapping of metal nanoparticles has focussed on a wavelength regime far from the particle’s resonance in the infrared. We experiment with laser wavelengths close to the plasmon resonance and expand the knowledge of metal nanoparticle trapping available to date. Existing theoretical models are put to the test when we compare these with our real experimental situations.

Page generated in 0.0718 seconds