• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 23
  • 23
  • 23
  • 23
  • 23
  • 23
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 134
  • 134
  • 134
  • 83
  • 54
  • 43
  • 36
  • 31
  • 30
  • 27
  • 22
  • 22
  • 19
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Bioavailability of trace metals in urban contaminated soils

Cook, Nicola. January 1997 (has links)
There are two main components to the research: the theoretical and the experimental. Chapter 2 contains an analysis of the state of soil quality guidelines and the scientific methods used to determine them. A number of recommendations to improve soil quality criteria for trace metals are offered including the importance of considering bioavailability and the need to use realistic conditions, trace metal sources and organisms. / A critical review of the literature dealing with predicting the availability of trace metals to plants is presented in Chapter 3. We found little agreement among hundreds of similar studies which relate plant metal uptake to the amount of metal extracted by selective chemical dissolution procedures. An extensive summary of the data shows clearly that the extraction methods are not widely applicable. Differences between individual soils, their metal retention capacities, as well as plant factors and environmental conditions contribute to the variability of the results. Alternative ways of assessing bioavailability are suggested. / The experimental component of the thesis focuses on the availability of trace metals to plants. In Chapter 4 the uptake of Cu from different soil pools was examined and the free metal ion (Cu2+) was found to be the best predictor of uptake by lettuce (Latuca sativa cv. Buttercrunch), ryegrass (Lolium perenne cv. Barmultra) and radish (Raphanus sativus cv. Cherry Belle). / In Chapters 5 and 6 we examined the effect of low-cost in-situ treatments on the availability of metals to plants in greenhouse and field experiments. Synthetic zeolites, P amendments, organic matter and clean soil were used and their effect on the bioavailability of Cd, Cu, Pb, Ni and Zn evaluated. The plants for the experimental work were lettuce and perennial ryegrass. Only the clean soil treatment was consistently effective in reducing the concentration of metals in the plant. We also wanted to determine whether the trace metals in the plant tissue came from the soil or from direct deposition of pollutants on the leaf surfaces. We found little evidence that metals in plants were a result of atmospheric fallout. / A method for the accurate analysis of total metal concentrations in a range of contaminated soils including those containing oil and grease was developed (Chapter 7). For this research the trace metals of concern are Cd, Cu, Ni, Pb and Zn---all commonly found in urban/industrial soils. The proposed method using HNO3/HClO4 has several advantages over the common HNO3/H2O2 procedure. We were able to digest larger soil samples and hence the final concentration of trace metals was usually in the range for analysis by inductively coupled plasma atomic absorption spectrometry or flame atomic absorption spectrometry.
52

Recycle of complexing reagents during mechanical pulping

Ager, Patrick January 2003 (has links)
The stability of hydrogen peroxide (H2O2) is a critical factor for the brightening of mechanical pulps. Inorganic ions, including Fe, Mn and Cu catalytically decompose H2O2. These troublesome metals promote the rapid transformation of H2O2 to nonselective hydroxyl radicals that degrade the cellulose fibres and decrease yields. / The interaction of aqueous metal•complexes with magnesium metal (Mg°) or bimetallic mixtures of magnesium with either palladium (Pd°/Mg°) or silver (Ag°/Mg°) were optimized to remove metals (Mn, Cu and Fe) from solution with concomitant release of the complexing reagent. The analyte metals were removed by both cementation on the surfaces of the excess Mg° and by precipitation as hydroxides. Overall, the reactions were rapid (3 or 10 min) and very efficient. The accelerators (Ag or Pd) were deposited on the surfaces of the Mg°. In a separate study, the excess of Mg° could be reused to mediate more metals removal without apparent loss of reactivity. Among the other iminodiacetate analogs (CDTA, MEDTA, EGTA, HEDTA, DPTA and MTBE), the EGTA and HEDTA proved to be possible substitutes for both efficient metal removal of Mn, Cu and Fe from solution and efficient release of chelating reagent. The measurement of particle size, performed by laser granulometry, demonstrated that smaller particles of precipitate were generated from metal-EDTA complexes by reaction with NaOH than by reaction with Pd°/Mg° bimetallic mixture. If the suspensions of particles were analyzed in the absence of ultrasound, the particles became aggregated into large flocs (up to 150 mum3 ). The reactivity of the bimetallic mixtures was exploited to remove Cu, Mn, Fe, Zn and Al that had been initially chelated with EDTA or DTPA from a thermomechanical pulp (TMP). After 15 min, the metals had been removed efficiently with the bimetallic mixtures. The EDTA released from the TMP filtrate could be recycled efficiently for a total of three cycles. On the other hand, the DTPA was not released as efficiently. Measurements of turbidity and chemical oxygen demand (COD) indicated no appreciable difference between the pulp samples with either chelating reagent. Residual H2O2 and ISO brightness measurements indicated no apparent differences among pulps that had been treated wi
53

The bioavailability of trace metals to soil invertebrates in urban contaminated soils /

Kennette, Debra. January 1997 (has links)
Bioavailability of trace metals in urban contaminated soils was investigated to relate chemical extraction efficiencies with biological effects. / Results from a Collembola reproduction bioassay showed minimal toxicity suggesting limited bioavailability. Chemical extractions were carried out on these urban soils. The sodium acetate extraction was the best predictor of the biological effects of Cd while the biological effects of Zn were best explained by a water extraction. / An earthworm uptake bioassay was done to quantify the bioavailable fractions. Cadmium, Cu, Pb and Zn accumulated in Lumbricus terrestris L. The sodium acetate extraction was the best predictor of Cd uptake while calcium chloride extraction best predicted Zn uptake by earthworms. / Treatments were made to urban soils to immobilize the metals and reduce their bioavailability. The metal concentrations were so low in the soils that the effects of the treatments could not be measured. / Collembola and earthworms are good indicators of trace metal bioavailability and should be included in the evaluation of contaminated soils.
54

Evaluation of leaching mechanisms and long-term leachability of metallic contaminants solidified/stabilized by cement matrices

Hung, Chien-ho 12 1900 (has links)
No description available.
55

Modeling natural attenuation of trace elements in soils

Reyes Delgadillo, Dulce B. January 2006 (has links)
Trace elements added to the soil by human activities could contaminate it and occasionally cause a threat to environmental and human health. The toxicity and mobility of a trace element are affected by the element's solubility, which in turn is influenced by the soil properties. When mobile, trace elements can be leached out of the soil. If leaching occurs at a faster rate than atmospheric deposition, element concentrations in the soil will decrease by natural attenuation. / We analyzed soil properties in 40 soils and their soil solutions to obtain a set of equations with the most significant predictors of As, Cd, Co, Cu, Mo, Ni, Pb and Zn in solution. The total element concentration and the pH were the best predicting variables of the amount of element in solution for all trace elements analyzed, while organic carbon and Al or Mn oxides also influenced the solubility of some trace elements. Using the equations predicting elemental solubility, we wrote a model for natural attenuation in the computer program Stella that considers atmospheric deposition as the input for trace elements and leaching as the output. Simulations were carried out for the 40 soils during 1,000 years with steady deposition inputs. / At current atmospheric deposition rates and the neutral to alkaline pH of these soils, attenuation occurred in most soils for Mo. For As, Cd, Co, Cu and Ni it occurred only in soils with abundant total element concentrations or an acidic pH. Minor retention occurred with Pb and Zn. Only Cd and Cu were of concern in leaching waters. The developed model can serve as a decision making tool in the selection of natural attenuation as a remediation strategy.
56

Assessment of environmental and public health hazards of electronic waste

Fitzwater, Kendra K. January 2007 (has links)
Electronic waste or `e-waste' is a rapidly growing form of solid waste worldwide. The heavy metals present in various electronic components demand attention because such metals may leach and pose significant health and environmental hazards (U.S. EPA, 2007). Knowledge of the potential of heavy metal leaching from e-waste represents an important contribution for developing U.S. standards for classifying e-waste as hazardous waste. Hazardous elements which leach from a variety of electronics wastes were assessed in laboratory batch studies. Electronic components evaluated included PC cathode ray tubes, PC motherboards, PC mice, television remote controls, and cellular phones. Each component was disassembled and digested using the Toxicity Characteristic Leaching Procedure (TCLP), EPA Method 1312, Method EA NEN 7371 (Dutch Environmental Agency), and Method DEV-S4 (Germany). The extracts were analyzed for lead, cadmium, chromium, silver, and cobalt. The TCLP consistently leached the greatest amounts of all metals; TCLP-soluble lead was extracted well beyond federal limits for several electronic devices. / Department of Natural Resources and Environmental Management
57

Lead and cadmium uptake by corn (Zea mays L.) from two Quebec soils.

Culley, John Laurence Benjamin January 1976 (has links)
No description available.
58

The influence of heavy metals on the diet changes of Neoperla (Plecoptera) in the northwest Miramichi River, New Brunswick /

MacIntosh, John, 1967- January 2002 (has links)
In the summers 1997, 1998 and 1999, over 100 aquatic invertebrate kick samples were collected in the Northwest Miramichi River of northeastern New Brunswick to examine the effects of chronic heavy metal exposure on the aquatic predatory Plecoptera community. In the group of predators, Neoperla (Plecoptera) was numerically dominant and gut content identifications were used to determine food chain and life cycle stages. Neoperla diet analysis indicated the Chironomidae (Diptera) as the dominant prey with predation upon Trichoptera and Ephemeroptera influenced by the life cycle stage of the predator. Gut content totals were analysed for predatory diet changes due to heavy metal contamination exposure. The Neoperla community indicated a prey shift from a Chironomidae based diet to one including a higher percentage of Ephemeroptera and Trichoptera earlier in the predators life history when compared with upstream control sites. Neoperla diets maintained their shift from the control station diets as the downstream movement of heavy metal contaminated water mixed and dissipated within the study area.
59

Surfactantligand systems for the simultaneous remediation of soils contaminated with heavy metals and polychlorinated biphenyls

Shin, Mari January 2004 (has links)
Ligand I- along with nonionic surfactant, Triton X-100 or anionic surfactant, sodium dodecyl sulfate (SDS) were applied as soil washing agents to desorb Cd from both naturally and artificially contaminated soils. After seven consecutive washings, up to 90% of Cd was desorbed from both soils. Triton X-100 with I- showed a higher capacity to desorbing Cd than did SDS with I-. The increase of ligand concentration was a critical factor for increasing leaching capacity. Without the ligand, surfactant alone could not desorb Cd effectively from either soil. After seven consecutive washings, a sequential extraction experiment was performed for soil residuals to define the soil fraction of Cd removed by the washing agent. Among the washing agents, only Triton X-100/I- could remove Cd from the exchangeable fraction of both soils. / Various ligands including I-, SCN-, and I-/SCN- in combination with Triton X-100 were tested for their efficacy in desorbing heavy metals such as Cd, Zn, Cu, and Pb from a field contaminated soil. Cadmium was preferentially desorbed by Triton X-100/I- whereas Zn and Cu were preferentially desorbed by Triton X-100/SCN-. The mixture of I- and SCN- with Triton X-100 desorbed the most Cd and Cu, but not for Zn, as I- inhibited Zn desorption. Sequential extraction experiments after seven washings showed that metals held in the exchangeable fraction can be desorbed only by a combination of ligand and surfactant. / Nonionic surfactants having different alkyl chain lengths in combination with ligand I- were tested for the desorption of Cd and PCBs from soil. Cadmium desorption was increased at the lower surfactant concentration and higher ligand concentration. The increase in the hydrophilic alkyl chain length of the surfactant adversely affected Cd desorption. Up to 100% of PCBs were successfully removed by most of surfactant-ligand combinations and the desorption was less dependent, compared to heavy metals, on the concentration of washing agents and length of alkyl chain. The linear relationships between number of washings and Cd desorption, and between alkyl chain length and Cd desorption was defined. (Abstract shortened by UMI.)
60

Bioaccumulation and mixture toxicity of aluminium and manganese in experimentally exposed woodlice, Porcellio scaber (Crustacea, Isopoda)

Kogoui Kamta, Frederic Noel January 2018 (has links)
Thesis (MTech (Environmental Health))--Cape Peninsula University of Technology, 2018. / Soil ecosystems in urban, rural and agricultural environments receive chemical input from diverse sources of contamination, such as wastewater, industrial discharge, agricultural and urban runoff, fertilizers, vehicle leakages, landfill seepage, and animal waste overspill. Agricultural activities, transportation and industrial activities are suspected to be the highest sources of metal contamination in Cape Town. Although scientists generally have a good understanding of the toxicity of individual chemical pollutants, there is a great need to bridge the gap between our understanding of the toxic effects of exposure to individual contaminants and those effects from exposure to mixtures of chemicals. Woodlice and other soil detritivores have a particularly important ecosystem function in mineralising organic matter. Woodlice experience stress when exposed to toxic levels of metals in the diet, which can reduce feeding rates and may combine with natural stresses to reduce fitness and lower 'performance', thereby possibly resulting in these organisms being unable to completely fulfil their ecological function. The objectives of this study were: to compare how aluminium and manganese are bioaccumulated in Porcellio scaber in terms of the contribution of the hepatopancreas in metal storage compared to the rest of the body; and to determine whether mixtures of aluminium and manganese affect each other’s bioaccumulation and distribution in Porcellio scaber. Woodlice collected from a clean field site (Kirstenbosch Botanical Garden) were experimentally exposed in the laboratory to a range of environmentally relevant aluminium and manganese concentrations. The woodlice were exposed to these metals in single and mixed metal experiments. Oak leaves, collected from a clean site, were contaminated with aluminium and manganese. Therefore, the woodlice were exposed via their food source. A control experiment, where oak leaves were not contaminated, was also prepared. At week 0 and after five weeks of exposure, a sample of the woodlice (5 per exposure group) were dissected to remove the hepatopancreas. Hepatopancreas and rest of the body samples were acid digested and analysed for the metals by means of the ICP-MS. Contrary to the existing knowledge of metals accumulating in the hepatopancreas of woodlice when ingested, this study showed a higher bioaccumulation of aluminium in the rest of the body of woodlice after 5 weeks of exposure than in the hepatopancreas. This result was interpreted as a possible detoxification mechanism by woodlice through the use of the exoskeleton during the moult cycle. A similar result was found when woodlice were exposed to mixtures of aluminium and manganese. This translated to the fact that woodlice were unable to effectively deal with the toxicity caused by the mixture of aluminium and manganese. In the group of woodlice exposed to manganese alone, it was found that manganese concentrations in the rest of the body of woodlice exposed for 5 weeks were statistically higher than the manganese concentrations in the rest of the body of woodlice at the start of the exposure (week 0). However, in the hepatopancreas, there were no statistical differences between the manganese concentrations in week 0 woodlice and the manganese concentrations in week 5 woodlice. Furthermore, manganese concentrations in the rest of the body of week 5 woodlice were statistically higher than manganese concentrations in the hepatopancreas of week 5 woodlice. This was interpreted as further proof that woodlice would accumulate certain metals (aluminium and manganese in this case) in their exoskeleton so that elimination can follow during the moult cycle.

Page generated in 0.1137 seconds