Spelling suggestions: "subject:"detals at high temperatures"" "subject:"acetals at high temperatures""
1 |
An investigation of metal particle reaction with the sodium D line reversal techniqueSchliessmann, Michael O. 08 1900 (has links)
No description available.
|
2 |
A theoretical and experimental study of self-propagating high-temperature synthesis of titanium carbideHuque, Ziaul 10 January 1991 (has links)
Self-propagating high-temperature synthesis (SHS) is a new
method of producing advanced ceramic materials and offers an
attractive alternative to conventional methods of materials
processing.
An experimental investigation was carried out to determine
the SHS reaction wave propagation speed in a vertical cylindrical
compact made from a mixture of titanium and graphite powders.
Ignition was accomplished by radiatively heating the top surface of
the cylinder by resistively heated tungsten heating coils. Syntheses
were carried out in inert argon environment and under atmospheric
pressure. Propagation speeds were determined by analyzing the
temperature distribution with time at two locations at known axial
distance. Effects of various system parameters, such as, density and
diameter of the initial compact, different mixing ratios of the
reactants and dilution with product, on reaction propagation speed
were determined.
A numerical model was also developed to predict the
propagation speed. A two-dimensional formulation was adopted
with both radiative and natural convective heat loss from the
periphery of the cylindrical compact using constant values of
properties and kinetic parameters. Two different kinetic models
describing the reactions involving solids are employed to calculate
the wave speed using a finite difference scheme. The calculated
results were compared with the experimental data.
Trends of the results with Kanury kinetic model were found to
be in better agreement with the experiments. Results showed no
significant effect of heat loss on the propagation speed within a
practical range of compact diameter. Quenching conditions of the
reaction for titanium rich and carbon rich cases and also for the case
of dilution with the product were identified. Variation of
propagation speed with sample initial density showed a maximum
value at densities between 2.1 gm/cm³ and 2.2 gm/cm³. During the
synthesis, the samples were found to expand axially. Hence the final
product obtained was highly porous with densities below 50% of the
density of TiC. / Graduation date: 1991
|
3 |
The effects of hydrogen, hydrogen sulfide, and ammonia on the elevated temperature deterioration of metals and alloys in carbonaceous gas environments.Thron, Harry M. 12 1900 (has links)
No description available.
|
4 |
An investigation of the effects of trace additions of H[subscript]2S on the high-temperature reactions of metals in CO at ambient and elevated pressuresTaylor, Robin Doyle 08 1900 (has links)
No description available.
|
5 |
The high temperature reactions of carbon monoxide with iron, nickel, and austenitic stainless steelCox, Arthur Reeves 12 1900 (has links)
No description available.
|
6 |
Flat flame burner with an opposed nitrogen-aluminum particle jetFisk, Clarence Alfred 05 1900 (has links)
No description available.
|
7 |
Design and preliminary testing of a premixed flat-flame burner incorporating an opposed gas particle jetShakill, Mohammad Amin 05 1900 (has links)
No description available.
|
8 |
Fracture toughness behavior of weldments at elevated temperatureCretegny, Laurent 12 1900 (has links)
No description available.
|
9 |
High temperature creep behaviour niobium bearing ferritic stainless steelsCain, Victoria January 2005 (has links)
Thesis (MTech (Mechanical Engineering))--Cape Peninsula University of Technology, 2005 / The objective of this project was to monitor the high temperature creep behaviour of 441
stainless steel. Two different alloys of 441 were investigated; the main difference
between them being the Niobium content. Particularly imporlant to the project was how
the Niobium content and grain size affected the creep resistance of the material.
Creep tests were performed using purpose built constant load creep test rigs. Initially the
rigs were not suitable for the testing procedures pertaining to this project. This was due to
persistent problems being experienced with regards the reliability and reproducibility of
the rigs. After various modifications were made the results produced from the rigs were
consistent.
Creep test data was used in order to determine the mechanism of creep that is operative
within the material (at a predetermined temperature) under a predetermined load.
Particular attention was paid to the resulting stress exponents. in order to identify the
operative creep mechanism. The identification of the operative creep mechanisms was
also aided by microscopical analysis. This analysis was also necessary to monitor how
the grain size had altered at various annealing temperatures.
Heat treatment was used as a method to alter the high temperature strength and
microstructure of the material. Heat treatments were performed at various temperatures
in order to determine the ideal temperature to promote optimum creep resistance of 441.
All heat treatments were performed in a purpose designed and built high temperature salt
bath furnace. The commissioning of the salt bath formed part of the objectives for this
project.
Sag testing was also conducted, using purpose built sag test rigs. It was necessary to
design and manufacture a sag test rig that could be comparable to the industry accepted
method of sag testing known as the two-point beam method, as this method is believed to
produce inconsistent results.
Conclusions have been drawn from the results of the data and from previous research on
the subject matter.
|
10 |
High temperature creep behaviour niobium bearing ferritic stainless steelsCain, Victoria January 2005 (has links)
A thesis submitted to the Faculty of Engineering in
fulfilment of the requirements for the degree of Master of
Technology in Mechanical Engineering
2005 / The objective of this project was to monitor the high temperature creep behaviour of 441
stainless steel. Two different alloys of 441 were investigated; the main difference
between them being the Niobium content. Particularly imporlant to the project was how
the Niobium content and grain size affected the creep resistance of the material.
Creep tests were performed using purpose built constant load creep test rigs. Initially the
rigs were not suitable for the testing procedures pertaining to this project. This was due to
persistent problems being experienced with regards the reliability and reproducibility of
the rigs. After various modifications were made the results produced from the rigs were
consistent.
Creep test data was used in order to determine the mechanism of creep that is operative
within the material (at a predetermined temperature) under a predetermined load.
Particular attention was paid to the resulting stress exponents. in order to identify the
operative creep mechanism. The identification of the operative creep mechanisms was
also aided by microscopical analysis. This analysis was also necessary to monitor how
the grain size had altered at various annealing temperatures.
Heat treatment was used as a method to alter the high temperature strength and
microstructure of the material. Heat treatments were performed at various temperatures
in order to determine the ideal temperature to promote optimum creep resistance of 441.
All heat treatments were performed in a purpose designed and built high temperature salt
bath furnace. The commissioning of the salt bath formed part of the objectives for this
project.
Sag testing was also conducted, using purpose built sag test rigs. It was necessary to
design and manufacture a sag test rig that could be comparable to the industry accepted
method of sag testing known as the two-point beam method, as this method is believed to
produce inconsistent results.
Conclusions have been drawn from the results of the data and from previous research on
the subject matter.
|
Page generated in 0.1207 seconds