• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The petrogenesis of the Eocene Challis Volcanic Group, Idaho, western U.S.A

McKervey, John Antony January 1998 (has links)
The rocks of the Challis Volcanic Group, Idaho are investigated and constraints on their petrogenesis used to evaluate the tectonic control on the formation of early, extensionassociated magmatism in the western U. S. A. New and published 40Ar-39Ar analyses indicate that the rocks of the Challis Volcanic Group erupted between - 50 and 45 Ma at extrusion rates estimated at 0.01 to 0.03 km3 yr 1. The rocks have high-K calcalkaline/ shoshonitic compositions and incompatible trace element analyses show them to be LILE and LREE enriched ((La/Yb) -7 to 20) but relatively depleted in Nb, Ta and Ti (e. g. Nb/La < 0.5 in the main). All rocks have high initial 87Sr/86Sr (0.70673 to 0.71135) and low 143Nd/144Nd (0.51151 to 0.51234) ratios in comparison to oceanic basalts. The rocks are interpreted to result from partial melting in both spinel and garnet facies of heterogeneousm, ajor elementd epleted,L REE enriched but Nb, Ta and Ti depletedp eridotite source regions in the lithospheric mantle. The origin of these LREE enriched source regions is most probably related to mantle metasomatism in a subduction zone tectonic setting, although the' age of these events are not constrained. The petrogenesis of the Challis Volcanic Group is broadly similar to early magmatism from areas of the Cordillera to the south (e. g. Colorado River Trough), but contrasts with areas to the north where crustal melting apparently dominates (e. g. northern Idaho: Omineca Belt). Thus it is suggested that the syn-compression thermal history of the Cordillera, immediately prior to extension and early magmatism, varies significantly between southern and northern Idaho. This variation correlates spatially with the northern limit of compression within the Laramide Foreland Province (. 75 to 45/30 Ma). Compressional deformation within the Laramide Foreland Province may be coincident with a period of sub-horizontal subduction and therefore partial melting of the mantle lithosphere may be related to the removal of this subducted slab from beneath the lithosphere, although this remains poorly constrained. A comparison is made between the Challis Volcanic Group and Archaean sanukitoids, to suggest that the Tertiary rocks may provide a tectonomagmatic analogue for these particular late Archaean rocks. The implications of this comparison for late Archaean tectonics and crustal growth are discussed.
2

Interactions magmas-détachements : Du terrain (Mer Egée, Grèce) à l'expérimentation / Magmas-detachments interactions : From field (Aegean Sea, Greece) to experimental work

Rabillard, Aurélien 19 December 2017 (has links)
Les intrusions magmatiques au sein d’une lithosphère soumise aux contraintes tectoniques sont souvent considérées comme des instabilités thermomécaniques à même de stimuler transitoirement et localement la localisation de la déformation. Dans le but de tester ce modèle et de déterminer les possibles mécanismes gouvernant l’initiation d’une déformation localisée au contact et au sein de corps magmatiques en cours de consolidation, ce travail de thèse se propose de coupler une étude de terrain à une approche expérimentale. Les Cyclades (Mer Égée, Grèce) constituent un domaine de croûte continentale en extension dans lequel se sont mises en place au cœur de cinq dômes métamorphiques extensifs (MCCs) des intrusions magmatiques, elles-mêmes coiffées par des systèmes de détachements. Les diverses campagnes de terrain, combinées aux données de la bibliographie, ont permis de proposer un modèle d’interaction régional dans lequel ces corps magmatiques impactent l’évolution tardive de MCCs cycladiques. Au vu des âges de mise en place des intrusions (15-9 Ma), soit plusieurs millions d’années après le début de l’extension et les premiers stades d’exhumation de roches métamorphiques, le magmatisme dans les Cyclades ne peut être considéré comme un candidat réel pour la genèse de MCCs. Néanmoins, les continuums de la déformation enregistrés en bordure des intrusions (depuis l’état magmatique jusqu’aux conditions ductile/cassant) et les relations géométriques avec les détachements laissent supposer un rôle majeur des complexes magmatiques dans les processus de redistribution et de localisation de la déformation, notamment sur le développement séquentiel de détachements. Les vecteurs de localisation de la déformation au sein de magmas partiellement cristallisés ont été en parallèle recherchés par la voie expérimentale. L’étude du comportement structural de magmas, chimiquement et texturalement proches de systèmes naturels, a permis d’une part de confirmer que la déformation se localise préférentiellement le long d’interfaces à rhéologie contrastée tels aux abords de filons syn-plutoniques. Il est d’autre part montré que la présence initiale d’inhomogénéités texturales (e.g. concentration de cristaux en amas) au sein de magmas moyennement cristallisés peut de manière drastique influencer le degré de localisation de la déformation au cours des stades de refroidissement ultérieurs. / Magma intrusions within the lithosphere are often considered as thermomechanical instabilities capable to locally and transiently stimulate strain localization. With the aim of testing this model and determining possible mechanisms that govern the initiation of localized deformation at the contact and within magmatic bodies, this thesis combine a fieldwork with an experimental approach. The Cyclades (Aegean Sea, Greece) form a highly extended continental domain in which five metamorphic core complexes (MCCs) were intruded by magmatic complexes, themselves capped by detachment systems. All collected structural and kinematic data, combined with previous investigations, converge toward a regional scheme in which magmatic bodies dynamically impacted the late evolution of the Cycladic MCCs. Granitoids were emplaced in relatively short time period (15-9 Ma) while metamorphic domes were largely exhumed after more than 10 Myrs of extension. None of those intrusions thereby proves to be a real candidate for the genesis of MCCs. However, continuums of deformation recorded within granitoids (magmatic to ductile/brittle states) as well as geometrical relationships with detachments suggest a pivotal role of magmatic complexes in redistribution and localization processes of the deformation, with in particular the sequential development of detachments. Precursors of strain localization within partially cristallized magmas have been concurrently deciphered by an experimental study. The investigation of the structural behavior of magmas, chemically and texturally similar to natural systems, corroborates that strain localization is efficiently activated along interfaces with contrasting rheology such as in the vicinity of synplutonic dikes. It has been also shown that the initial presence of textural inhomogeneities (e.g. like clusters) in medium-crystallized magmas can drastically influence the degree of strain localization during subsequent cooling stages.
3

INVESTIGATION OF CENOZOIC CRUSTAL EXTENSION INFERRED FROM SEISMIC REFLECTION PROFILES AND FIELD RELATIONS, SE ARIZONA

Arca, Mehmet Serkan January 2009 (has links)
Mid-Tertiary metamorphic core complexes in the Basin and Range province of the western North American Cordillera are characterized by large-magnitude extensional deformation. Numerous models have been proposed for the kinematic evolution of these metamorphic core complexes. Such models generally invoke footwall isotatic rebound due to tectonic denudation, and the presence of a weak middle crust capable of flow at mid-crustal levels. In popular models of Cordilleran-style metamorphic core-complex development, initial extension occurs along a breakaway fault, which subsequently is deformed into a synform and abandoned in response to isostatic rebound, with new faults breaking forward in the dominant transport direction. In southeast Arizona, the Catalina and Pinaleño Mountains core complexes have been pointed to as type examples of this model. In this study, the “traditional” core-complex model is tested through analysis of field relations and geochronological age constraints, and by interpretation of seismic reflection profiles along a transect incorporating these core complexes. Elements of these linked core-complex systems, from southwest to northeast, include the Tucson Basin, the Santa Catalina-Rincon Mountains, the San Pedro trough, the Galiuro Mountains, the Sulphur Springs Valley, the Pinaleño Mountains, and the Safford Basin. A new digital compilation of geological data, across highly extended terranes, in conjunction with reprocessing and interpretation of a suite of industry 2-D seismic reflection profiles spanning nearly sub-parallel to regional extension, illuminate subsurface structural features related to Cenozoic crustal extension and provide new constraints on evolution of core complexes in southeast Arizona. The main objective is to develop a new kinematic model for mid-Tertiary extension and core complex evolution in southeast Arizona that incorporates new geological and geophysical observations. Geological and seismological data indicate that viable alternative models explain observations at least as well as previous core-complex models. In contrast to the “traditional” model often employed for these structures, our models suggest that the southwest- and northeast-dipping normal-fault systems on the flanks of the Galiuro Mountains extend to mid-crustal depths beneath the San Pedro trough and Sulphur-Springs Valley, respectively. In our interpretations and models, these oppositely vergent fault systems are not the breakaway faults for the Catalina and Pinaleño detachment systems.

Page generated in 0.0913 seconds