• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Innate Confinement Effects in PCL Oligomers as a  Route to Confined Space Crystallisation

Sanandaji, Nima January 2009 (has links)
<p>In this work, an in-depth analysis of crystalline characteristics has been performed for a unique set of strictly monodisperse poly-ε-caprolactone (PCL) oligomers. The molecules have different sets of end groups with various degrees of bulkiness and hydrogen bonding potential, affecting their aptitude to pack in ordered crystal structures. The oligomers also have different numbers of repeating units (<em>n </em>= 2-64), affecting the degree to which end groups influence overall molecular characteristics. The presence of bulky end groups leads to an innate confinement effect on crystallisation which in turn makes it possible to utilize the set of PCL oligomers to study confined space crystallisation. Confined space crystallisation is explored as a route to gain further understanding about the early metastable phases in crystal formation.</p><p> </p><p>The monodisperse nature of the samples made it possible to collect very precise small-angle and wide-angle X-ray scattering data (SAXS and WAXS) as well as calorimetric data. Computer modeling studies were performed to support experimental findings. It was shown that end groups strongly affected crystallisation features for the shorter oligomers (<em>n </em>≤ 8) but to a lesser extend for the longer oligomers (<em>n </em>≥ 16). The presence of a bulky end group at one end of an oligomer could inhibit the formation of hydrogen bonds on the other end. Short oligomers (<em>n</em> = 8) with OH-end groups exhibited novel packing characteristics. At one isothermal crystallisation temperature the molecules exhibited not only lamellar ordering but also an additional, likely rectangular or slanted, ordering. The sample was packed in a unique structure with molecular chains lying parallel but not aligned head to head with each other. At a higher crystallisation temperature the molecules packed in a double layered structure and at an even higher temperature in a typical non-folded but tilted single-molecular layer pattern.</p><p> </p><p>Unit cell determination was performed for a short oligomer with two bulky end groups, showing the existence of a tetragonal unit cell with different dimensions than the orthorhombic unit cells previously reported for linear PCL without end groups. To gain greater insight into the earliest stages of molecular packing, in situ WAXS measurements were performed using a synchrotron radiation beam and measuring data each 12 s whilst very slowly going from melt to isothermal crystallisation. It was shown that the crystal unit cell was distorted during the first minutes of slow crystallisation, which might either represent a metastable phase or else a highly distorted orthorhombic phase.</p>
2

Rapid solidification behaviour of Fe and Al based alloys

Ranganathan, Sathees January 2009 (has links)
Rapid solidification experiment on Fe-Cr-Mo-Mn-Si-C alloy was performed to investigate metastable phases formed during the solidification. A wide range of cooling rate was used to analyse the sample from melt spinning technique (~107 K/s) to water quenching method (~102 K/s). A single phase featureless structure was obtaind initially in the melt spinning experiment for 77Fe-8Cr-6Mn-5Si-4C alloy. Reduction of C and addition of Mo led to form a complete featureless structure for 2.85 mm rod for 72.8Fe-8Cr-5Mo-6Mn-5Si-3.2C. Subsequent investigation of influence of Mo, Cr and Mn on the single phase featureless structure concludes that 7.5 mm thick complete featureless phase could be formed at 63.8Fe-15Cr-7Mo-6Mn-5Si-3.2C alloy composition. In a separate attempt, powder samples of 40 μm dia. size complete featureless powders were produced for three slightly different compostions for the same alloy system. Characterisation of the featureless phases reveals that it could be a single phase metastable structure of ε phase or austenitic solid solution with high amount of alloying element dissolved in it. Subsequent heat treatment of this featureless phase of the rod and the powder at different temperatures formed bainitic ferrite with fine carbides dispersed in the austenitic matrix. Hardness values measured on featureless phase found to have influenced by the alloying element specially Mo, Cr and Mn. In an attempet to improve clean melting condition to extend the featureless phase and to form amorphous, an elliptic short arc lamp vaccum furnace was designed with 10 kW lamp power. Around 30 g of iron based alloy system was melted and cast as a 7 mm rod sample in a copper mould. Design details of new mirror and the lamp furnace are presented. In a separate study, influence of the melt temperature on Al-Y and Al-Si alloys were investigated by levitaion casting in a silver mould at around 2000 K/s cooling rate. Plate like structure of Al8Y3 primary phase was observed at low melt temperature with small percentage of peritectic transformation of Al8Y3 and liquid melt into Al9Y2. A pre-dentritic star like crystal of Al3Y was observed in a fine eutectic matrix at very high melt temperature. Amount and number of primary Si crystals formed in a unit area during the solidification increases as the melt temperature increases. / QC 20100805
3

Pulsed Laser Ablation Deposition of Intermetallic Thin Films: A Study of Evolution of Metastable Phases and Ultra-fine Microstructures

Bysakh, Sandip 01 1900 (has links)
This thesis is devoted to the deposition of intermetallic thin films by laser ablation deposition (LAD) and their characterization. Pulsed laser ablation and subsequent deposition of the ablated vapours produces films under conditions very far away from equilibrium. Besides the film, which forms directly by quenching the vapour or plasma on substrate, one also obtains under certain conditions micron and sub-micron sized spherical droplets of alloy melt on to the film. The latter travel at very high velocities and impinge on the substrate resulting in a very high rate of heat transfer during solidification from liquid state. Therefore, in this work it was possible to study the microstructure evolution depending on quenching rates of different sized droplets and compare with the extreme case of vapour/plasma quenching. The compositions selected correspond to the intermetallic compounds in Al-Fe, Al-Ni and Ti-Si binary systems. Pre-alloyed targets of the appropriate intermetallic compositions were used for ablation by laser. The deposition system has been designed and built in-house. The characterization is mainly done by transmission electron microscopy (TEM). The study focuses on microstructure and phase evolution within these intermetallic films at room temperature, at elevated temperature and during heating the room temperature deposited films in heating stage inside the TEM.
4

Innate Confinement Effects in PCL Oligomers as a  Route to Confined Space Crystallisation

Sanandaji, Nima January 2009 (has links)
In this work, an in-depth analysis of crystalline characteristics has been performed for a unique set of strictly monodisperse poly-ε-caprolactone (PCL) oligomers. The molecules have different sets of end groups with various degrees of bulkiness and hydrogen bonding potential, affecting their aptitude to pack in ordered crystal structures. The oligomers also have different numbers of repeating units (n = 2-64), affecting the degree to which end groups influence overall molecular characteristics. The presence of bulky end groups leads to an innate confinement effect on crystallisation which in turn makes it possible to utilize the set of PCL oligomers to study confined space crystallisation. Confined space crystallisation is explored as a route to gain further understanding about the early metastable phases in crystal formation.   The monodisperse nature of the samples made it possible to collect very precise small-angle and wide-angle X-ray scattering data (SAXS and WAXS) as well as calorimetric data. Computer modeling studies were performed to support experimental findings. It was shown that end groups strongly affected crystallisation features for the shorter oligomers (n ≤ 8) but to a lesser extend for the longer oligomers (n ≥ 16). The presence of a bulky end group at one end of an oligomer could inhibit the formation of hydrogen bonds on the other end. Short oligomers (n = 8) with OH-end groups exhibited novel packing characteristics. At one isothermal crystallisation temperature the molecules exhibited not only lamellar ordering but also an additional, likely rectangular or slanted, ordering. The sample was packed in a unique structure with molecular chains lying parallel but not aligned head to head with each other. At a higher crystallisation temperature the molecules packed in a double layered structure and at an even higher temperature in a typical non-folded but tilted single-molecular layer pattern.   Unit cell determination was performed for a short oligomer with two bulky end groups, showing the existence of a tetragonal unit cell with different dimensions than the orthorhombic unit cells previously reported for linear PCL without end groups. To gain greater insight into the earliest stages of molecular packing, in situ WAXS measurements were performed using a synchrotron radiation beam and measuring data each 12 s whilst very slowly going from melt to isothermal crystallisation. It was shown that the crystal unit cell was distorted during the first minutes of slow crystallisation, which might either represent a metastable phase or else a highly distorted orthorhombic phase. / QC 20101105
5

Der Einfluss von Defekten auf das Schaltverhalten ferroelektrisch modulierter Substanzen / The influence of defects on the switching behaviour of ferroelectric modulated substances

Behrendt, Karsten 21 July 2015 (has links)
No description available.
6

On the effect of nitrogen, hydrogen and cooling rate on the solidification and pore formation in Fe-base and Al-base alloys

Makaya, Advenit January 2007 (has links)
Experiments on the production of porous metallic materials were performed on Fe-base and Al-base alloys. The method involves dissolution of gases in the liquid state and solidification at various cooling rates. The alloy compositions were selected to induce solidification of primary particles intended to control the pore distribution. For the Fe-base alloys, nitrogen was introduced into the melt by dissolution of chromium nitride powder. Fe-Cr-Mn-Si-C alloys featuring M7C3 carbide particles were selected. For the Al-base alloys, hydrogen gas was dissolved into the melt by decomposition of water vapor. Al-Ti and Al-Fe alloys featuring primary Al3Ti and Al3Fe intermetallic particles, respectively, were considered. In the Fe-base alloys, a homogeneous distribution of gas pores through the specimens’ volume was obtained at high cooling rate (water quenching) and after introduction of external nucleating agents. In the case of the Al-base alloys, a good pore distribution was observed at all cooling rates and without addition of nucleating agents. Calculations of the variation of nitrogen (respectively hydrogen) solubility based on Wagner interaction parameters suggest that pore nucleation and growth occur during precipitation of the primary particles (M7C3 carbides, Al3Ti or Al3Fe intermetallics), due to composition changes in the melt and resultant supersaturation with gas atoms. Microscopic analyses revealed that the primary particles control the pore growth in the melt and act as barriers between adjacent pores, thereby preventing pore coalescence and promoting a fine pore distribution. Uniaxial compression testing of the porous Al-Ti and Al-Fe materials showed the typical compressive behavior of cellular metals. Further work is needed to improve the quality and reproducibility of the porous structures which can possibly be used in energy absorption or load-bearing applications. As a corollary result of the quenching of hypereutectic Fe-Cr-Mn-Si-C alloys in the experiments of synthesis of porous metals, a homogeneous featureless structure was observed in some parts of the samples, instead of the equilibrium structure of M7C3 and eutectic phases. Subsequent investigations on rapid solidification of Fe-base alloys at various alloy compositions and cooling rates led to the formation of a single-phase structure for the composition Fe-8Cr-6Mn-5Mo-5Si-3.2C (wt.%), at relatively low cooling rates (≈103 K/s) and for large sample dimensions (2.85 mm). The single phase, which is likely to be the hcp ɛ-phase, was found to decompose into a finely distributed structure of bainite and carbides at ≈600 °C. The annealed structure showed very high hardness values (850 to 1200 HV), which could be exploited in the development of high-strength Fe-base materials. / QC 20100809
7

Structural Characterization Of Sputter-deposited Ss304+xal (x = 0, 4, 7 And 10 Wt.%) Coatings And Mechanically Milled Ti, Zr And

Seelam, Uma Maheswara 01 January 2010 (has links)
Study of the metastable phases obtained by non-equilibrium processing techniques has come a long way during the past five decades. New metastable phases have often given new perspectives to the research on synthesis of novel materials systems. Metastable materials produced by two non-equilibrium processing methods were studied for this dissertation- 304-type austenitic stainless steel (SS304 or Fe-18Cr-8Ni)+aluminum coatings produced by plasma enhanced magnetron sputter-deposition (PEMS) and nanocrystalline Ti, Zr and Hf powders processed by mechanical milling (MM). The objective of the study was to understand the crystallographic and microstructural aspects of these materials. Four SS304+Al coatings with a nominal Al percentages of 0, 4, 7 and 10 wt.% in the coatings were deposited on an SS304 substrate by PEMS using SS304 and Al targets. The as-deposited coatings were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and three-dimensional atom probe microscopy (3DAP). Surface morphology and chemical analysis were studied by SEM. Phase identification was carried out by XRD and TEM. The microstructural features of all the coatings, as observed in the TEM, consisted of columnar grains with the columnar grain width (a measure of grain size) increasing with an increase in the Al content. The coatings had grains with average grain sizes of about 100, 290, 320 and 980 nm, respectively for 0, 4, 7 and 10 wt.% Al. The observed grain structures and increase in grain size were related to substrate temperature during deposition. XRD results indicated that the Al-free coating consisted of the non-equilibrium ferrite and sigma phases. In the 4Al, 7Al and 10Al coatings, equilibrium ferrite and B2 phases were observed but no sigma phase was found. In 10Al coating, we were able to demonstrate experimentally using 3DAP studies that NiAl phase formation is preferred over the FeAl phase at nano scale. During mechanical milling of the hexagonal close packed (HCP) metals Hf, Ti and Zr powders, unknown nanocrystalline phases with face centered cubic (FCC) structure were found. The FCC phases could be either allotropes of the respective metals or impurity stabilized phases. However, upon MM under high purity conditions, it was revealed that the FCC phases were impurity stabilized. The decrease in crystallite size down to nanometer levels, an increase in atomic volume, lattice strain, and possible contamination were the factors responsible for the transformation.

Page generated in 0.0428 seconds