• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 12
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 97
  • 20
  • 16
  • 15
  • 15
  • 13
  • 12
  • 12
  • 11
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Improvements to Argon-Argon Dating of Extraterrestrial Materials

Weirich, John R. January 2011 (has links)
The source of potassium and argon in ordinary chondrites is determined by comparing the argon activation energies of feldspar, pyroxene, and olivine with that of the L chondrites Chico and North West Africa (NWA) 091. In addition, shock pressures of 29 to 55.8 GPa are shown to lower the activation energy of feldspar. Comparable shock pressures lowers the activation energy of pyroxene outside of error, but the variability of this value, even among unshocked samples, makes a clear distinction difficult. The effect of shock on olivine has not been investigated, by myself or others. Like many ordinary chondrites, Chico and NWA 091 have two major releases of argon, one at low temperature, and the other at high temperature. The low temperature release of Chico contains two releases, which match the activation energies of shocked and unshocked feldspar. The low temperature release of NWA 091 only contains a single release, which matches shocked feldspar. The high temperature release of both Chico and NWA 091 has an activation energy that is similar to pyroxene, but not olivine. A potassium mass balance of Chico shows that all the potassium in the meteorite is contained in feldspar, and Raman spectroscopy shows this feldspar has not been converted into a high pressure phase, indicating the high temperature release is inclusions in a high temperature mineral. This mineral is probably pyroxene based upon the activation energy, though thin sections provide evidence that feldspar is more closely associated with olivine. NWA 091 exhibits multiple isochrons, showing the presence of two nonprimordial and (probably) non-terrestrial trapped components of argon. The removal of these trapped components reveals a thermal event produced by a collisional impact on the L chondrite parent body at 475 ± 6 Ma (which supports a link between L chondrites and Ordovician fossil meteorites), as well as a similar event at ~800 Ma (which, combined with similar ages on other Solar System objects, suggests an increased impact flux at that time). Chico did not exhibit an isochron, and the age data for Chico is not reported.
32

The preservation and detection of morphological and molecular bacterial biomarkers and their implications for astrobiological research

Toporski, Jan January 2001 (has links)
No description available.
33

Constraining the Chemical Environment and Processes in the Protoplanetary Disk: Perspective from Populations of Calcium- and Aluminum-rich Inclusions in Ornans-group and Metal-rich Chondrules in Renazzo-group Carbonaceous Chondrites

Crapster-Pregont, Ellen J. January 2017 (has links)
Carbonaceous chondrites have an approximately solar bulk composition, with some exceptions (e.g. H), and exhibit a range of parent body alteration. Investigations of both pristine and altered chondrites yield valuable insight into the processes and conditions of the early Solar System prior to and resulting in the planets we observe today. Such insight and the dynamic models developed by astrophysicists are constrained by chemical, mineralogical, and textural characteristics of chondrite components (chondrules, refractory inclusions, metal, and matrix). This dissertation uses a variety of chondritic components to address the following: 1) what do correlations within a population of refractory inclusions reveal about early Solar System conditions; 2) what is the distribution of trace elements among chondrite components and how does this affect component formation from precursor aggregation to chondrite accretion; and 3) can metal associated with chondrules further our understanding of chondrule formation and/or deformation? The first two objectives were investigated using suite of carbonaceous Ornans-group (CO) chondrites of varying petrologic grades (Colony CO3.0, Kainsaz CO3.2, Felix CO3.3, Moss CO3.6, and Isna CO3.8). These chondrites were analyzed using several analytical techniques including: electron microprobe element mapping, a modal phase analysis algorithm, and laser ablation inductively coupled plasma mass spectrometry. Within the comprehensive dataset of refractory inclusion characteristics (area, major mineralogy, bulk major chemistry, texture, and rare Earth element (REE) patterns and abundances) there is an overwhelming lack of correlations implying that thermal processing prior to accretion was stochastic and that sorting was minimal. Only two CO chondrites were analyzed for REE abundances (Colony and Moss). While refractory inclusions exhibit the greatest enrichments in REE relative to CI, after modal recombination chondrule glass contributes most significantly to the bulk REE budget in both chondrites. The bulk mean REE patterns for both Colony and Moss are flat and approximately CI in abundance while the mean REE patterns for components are nearly flat with relative enrichments (~10x CI for both chondrule glass and refractory inclusions) or depletions (chondrule olivine) relative to CI. Lack of correlations between REE and other characteristics, nearly flat REE patterns and nearly equivalent enrichment factors relative to CI across chondrite groups, including the CO chondrites analyzed here, implies that REE were equilibrated in precursor material prior to chondrite component formation. We propose a scenario for the equilibration of REE with vapor-solid or solid-solid reactions with subsequent accretion of chondrite components. Metal-rich chondrules in Acfer 139, a carbonaceous Renazzo-group (CR) chondrite were used to address the final objective. Chemical information was obtained using electron microprobe quantitative analysis and element mapping, electron backscatter diffraction was used to analyze the crystal structure of the metal nodules, and computed tomography provided insight into the 3D relationships of the metal. Eight chondrules with abundant metal nodules, both as rims and within the chondrule interior, were analyzed in detail. Chondrule A is of particular interest as it contains three concentric metal layers. A majority of the metal nodules fall on the calculated condensation trajectory of Co/Ni in a vapor of solar composition with the interior metal nodules containing higher Ni wt% and Co wt% than the rim nodules. Twinning is evident in many of the metal nodules and could indicate a ubiquitous parent body deformation process. Chemical inhomogeneity of Ni only occurs within the metal nodules of chondrule A and implies these metal nodules were reheated to high temperatures. The combination of chemical inhomogeneity, multiple sets of twins, and other evidence of strain imply that the formation of these chondrules was not straightforward and involved multiple iterations of heating, and potentially addition of material. A plausible model of chondrule formation in the early Solar System must be able to account for this more complicated thermal and alteration history and produce the chemical and textural variety of chondrules present in the region of chondrite accretion.
34

Serine and cysteine thermal decomposition with respect to fossil dating and carbonaceous meteorites

Nagi, David Michael January 1984 (has links)
No description available.
35

EVIDENCE FOR A COMPOSITIONAL RELATIONSHIP BETWEEN ASTEROIDS AND METEORITES FROM INFRARED SPECTRAL REFLECTANCES

Feierberg, Michael Andrew January 1981 (has links)
High-resolution Fourier spectra in the 0.9-2.5 μm region were measured for sixteen asteroids. These data were combined with 0.3-1.1 μm spectrophotometry and 3.0-3.5 μm narrowband photometry for compositional analysis. Comparison spectra of meteorites and terrestrial minerals were measured in the laboratory, some under simulated asteroidal conditions of pressure and temperature. Spectra of eleven representative S-type asteroids show a range of olivine/pyroxene ratios overlapping those of ordinary and carbonaceous chondrites, but not approaching those of common differentiated meteorite types. The reddening in the asteroid spectra implies the presence of metallic iron, but if the metal is finely divided its abundance could be low. S-type asteroids have spectra most consistent with undifferentiated compositions, and some of them, especially 8 Flora, could be ordinary chondrite parent bodies. 4 Vesta and 349 Dembowska are unusual asteroids which have spectra resembling those of achondritic meteorites. Vesta has a pyroxene-feldspar mineralogy intermediate in composition between eucrites and howardites. If shergottite-like basalts are present, they must be in low abundance. Dembowska has an olivine-pyroxene mineralogy similar in some ways to ordinary chondrites, but there is considerable evidence that it is actually a fragment of the mantle of a differentiated Vesta-like parent body. The most diagnostic spectral feature seen on three low-albedo asteroids is the 3 μm band due to water of hydration. 1 Ceres must consist mostly of a low-iron clay mineral with some hydrated salts. 2 Pallas has a low abundance of hydrated minerals relative to Ceres, with the bulk of its composition being anhydrous iron-free silicates. 324 Bamberga probably contains clay minerals, but its spectrum is dominated by abundant magnetite. These and other C-type asteroids have surface compositions consistent with massive aqueous alteration of primary carbonaceous chondrite minerals. These results all indicate that the compositions of main belt asteroids are more closely related to the compositions of meteorites than was previously believed. S-type and C-type asteroids are undifferentiated assemblages of which ordinary and carbonaceous chondrites are an incomplete sample. Differentiated meteorites could be derived from the other relatively rare asteroid types.
36

Thermal Processing in Ordinary Chondrites: Development of the Fast Electron Microprobe (FEM) Technique For Measuring Heterogeneity of Ferromagnesian Silicates

Marsh, Celinda Anne January 2007 (has links)
I have developed a technique that improves the speed, reproducibility, and sensitivity of the measurement of degree of equilibration in ordinary chondrites. The Fast Electron Microprobe technique (FEM) technique provides a continuous quantitative scale for the amount of thermal processing a particular sample has experienced. The Fast Electron Microprobe technique (FEM) allows us to quickly collect sufficient data to determine the homogeneity and composition of olivine and low-Ca pyroxene in ordinary chondrite thin sections. I have studied several meteorites that are homogenous in olivine composition, but heterogeneous in low-Ca pyroxene composition. One of these samples (ALH 85033) has previously been classified as an L4. The FEM technique allows reproducible measurements of the degree of thermal metamorphism in ordinary chondrites, improving our understanding of thermal processing of asteroids in the early solar system.
37

Non-destructive characterization of stony meteorites /

Smith, Darren L., January 1900 (has links)
Thesis (M.Sc.) - Carleton University, 2006. / Includes bibliographical references (p. 80-85). Also available in electronic format on the Internet.
38

Tiny space magnets : X-ray microscopy and nanopaleomagnetism of meteoritic metal

Nichols, Claire Isobel O'Bryen January 2017 (has links)
Meteorites provide information about the early history of our solar system and the formation and evolution of planetesimals. One of the few direct observations of internal geophysical processes within planetary bodies is the presence or absence of a dynamo-driven magnetic field. These observations provide essential constraints on the degree of differentiation, core solidification timescales and the driving forces for convection. This thesis focusses on the paleomagnetic information recorded by iron and stony-iron meteorites, providing us with a unique view-point for the generation and variability of core dynamo activity. Iron and stony-iron meteorites are primarily comprised of FeNi metal. The Widmanstätten pattern; an intergrowth of taenite and kamacite lamellae. Between these lamellae, a range of microstructures develop, dictated by the ‘M-shaped’ Ni diffusion profile. Among these microstructures is the cloudy zone, a region of tetrataenite islands in a Fe-rich matrix, formed by spinodal decomposition. The tetrataenite islands are extremely reliable paleomagnetic recorders. The direction of magnetisation and composition of FeNi microstructures was imaged using synchrotron X-rays. Magnetic contrast is generated using X-ray magnetic circular dichroism. The dimensions of tetrataenite islands within the cloudy zone directly correlate with cooling rates. Cooling rates vary from ~0.5–10,000°C/Myr and correspond to island sizes of ~500–10nm, respectively. The slowest cooled group of iron meteorites reveal multidomain magnetic behaviour within the cloudy zone, whereas in faster-cooled meteorites islands are vortex state. This demonstrates that cooling rate influences the magnetic properties of the cloudy zone. The subtly different cooling rates between different pallasite meteorites means that each meteorite provides a ‘snapshot’ of the parent body magnetic field at a different point during its thermal evolution. Paleointensity results provide the first observations of a quiescent period in dynamo activity preceding core solidification. This also helps to constrain the paleomagnetic signals associated with core nucleation, which, in turn, constrains the mechanism of solidification. Paleomagnetic studies of meteoritic metal were complemented with measurements of magnetic inclusions in olivines. Alternating-field and thermal demagnetisation experiments were carried out using both 2G SQUID and WSGI small-bore SQUID magnetometers. Results suggest that pallasite silicates are unreliable paleomagnetic recorders, and a planetary-strength paleointensity cannot be recovered. Paleomagnetic fidelity was also investigated for a dusty olivine grain from the Semarkona chondrite. Lorentz microscopy, transmission X-ray microscopy, nanotomography and micromagnetic simulations were used to rigorously test the behaviour of Fe-nanoparticles. The final study in this thesis focusses on the IAB iron meteorites. These meteorites have an unusual and complex history. Paleomagnetic results are accompanied by a detailed microstructural study using X-PEEM and electron backscatter diffraction to constrain the formation of two microstructures: pearlitic and spheroidised plessite. Paleomagnetic results suggest the IAB parent body did not have an active core dynamo. Meteorites represent the oldest material in our solar system, and their complex histories and susceptibility to alteration make them some of the most challenging samples to extract reliable paleointensity estimates from. Advanced electron microscopy and synchrotron techniques are now making it possible to extract reliable paleomagnetic information, with profound implications for the formation and evolution of the solar system.
39

The Petrogenesis of Angrites and Martian Meteorites Inferred from Isotope and Trace Element Systematics

January 2012 (has links)
abstract: The present understanding of the formation and evolution of the earliest bodies in the Solar System is based in large part on geochemical and isotopic evidences contained within meteorites. The differentiated meteorites (meteorites originating from bodies that have experienced partial to complete melting) are particularly useful for deciphering magmatic processes occurring in the early Solar System. A rare group of differentiated meteorites, the angrites, are uniquely suited for such work. The angrites have ancient crystallization ages, lack secondary processing, and have been minimally affected by shock metamorphism, thus allowing them to retain their initial geochemical and isotopic characteristics at the time of formation. The scarcity of angrite samples made it difficult to conduct comprehensive investigations into the formation history of this unique meteorite group. However, a dramatic increase in the number of angrites recovered in recent years presents the opportunity to expand our understanding of their petrogenesis, as well as further refine our knowledge of the initial isotopic abundances in the early Solar System as recorded by their isotopic systematics. Using a combination of geochemical tools (radiogenic isotope chronometers and trace element chemistry), I have investigated the petrogenetic history of a group of four angrites that sample a range of formation conditions (cooling histories) and crystallization ages. Through isotope ratio measurements, I have examined a comprehensive set of long- and short-lived radiogenic isotope systems (26Al-26Mg, 87Rb-87Sr, 146Sm-142Nd, 147Sm-143Nd, and 176Lu-176Hf) within these four angrites. The results of these measurements provide information regarding crystallization ages, as well as revised estimates for the initial isotopic abundances of several key elements in the early Solar System. The determination of trace element concentrations in individual mineral phases, as well as bulk rock samples, provides important constraints on magmatic processes occurring on the angrite parent body. The measured trace element abundances are used to estimate the composition of the parent melts of individual angrites, examine crystallization conditions, and investigate possible geochemical affinities between various angrites. The new geochemical and isotopic measurements presented here significantly expand our understanding of the geochemical conditions found on the angrite parent body and the environment in which these meteorites formed. / Dissertation/Thesis / Ph.D. Geological Sciences 2012
40

The record of primitive IIE meteorites: Implications for the formation of silicate-bearing iron meteorites

Van Roosbroek, Nadia 10 December 2015 (has links)
Iron meteorites are Fe-Ni alloys that are thought to represent samples of the cores of differentiated asteroids. A minority of the iron meteorites contain silicate inclusions, the so-called silicate-bearing or non-magmatic iron meteorites. The presence of chemically evolved silicate inclusions in a high-density Fe-Ni metal raises questions about their origin. The IIE group belongs to the non-magmatic iron meteorites and contains primitive as well as evolved silicate inclusions. The object of this thesis is to investigate the formation processes of the silicate-bearing iron meteorites by examination of the primitive IIE irons. The first chapter provides an overview of the state of the art of silicate-bearing iron meteorites and highlights the existing open questions. The second chapter discusses the most important analytical techniques that have been used during this thesis. The third chapter contains all the research conducted on the Mont Dieu meteorite, a new primitive member of the IIE group. This meteorite represents a unique member of the IIE group as it contains chondrules in its silicate inclusions. Together with the Netschaëvo meteorite, they are the only two IIE irons that show such a primitive texture. Based on the mineralogy, the major element composition and the oxygen isotope composition, we conclude that Mont Dieu originated as an H chondrite. The observation of a series of features, including silicate darkening, thick metal veins containing angular clasts, and the need for a heterogeneous heat source, led to an impact-based origin for Mont Dieu. The fourth chapter is dedicated to the investigation of two samples of the primitive Netschaëvo IIE meteorite, that show lithologies that are very different to those described in the literature. The investigated pieces of Netschaëvo can be classified as impact melt rocks (IMR) and we show that the precursor material of these IMR and the primitive clasts both originated from the same parent body. The occurrence of both lithologies in the same meteorite suggests that Netschaëvo itself is a breccia containing metamorphosed and IMR clasts and that the meteorite formed as the result of an impact event. The fifth chapter focuses on the fine-grained matrix material found in the silicate inclusions of Netschaëvo IIE. This study provides insights into core-mantle boundary environments and confirms the impact-origin of Netschaëvo by the presence of minerals and textures pointing to a very rapid cooling. The investigations show that the re-partitioning of phosphorus from the metal into the silicate material during cooling might be a general process during planetary differentiation. In the sixth chapter, the veins present in the silicate inclusions of Mont Dieu are described in detail, and compared to the veining structures found in Techado IIE silicate. The characteristics of the processes causing the formation of these veins are discussed. The seventh chapter summarizes the conclusions of this thesis. The detailed petrographic and geochemical examinations conducted on the investigated samples show that collisions played a major role in the formation of the IIE iron meteorites. The work performed in the framework of this thesis provides a significant contribution towards a more complete and in-depth understanding of the formation mechanisms of silicate-bearing iron meteorites. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0455 seconds