• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1739
  • 162
  • 160
  • 160
  • 160
  • 160
  • 160
  • 157
  • 107
  • 61
  • 59
  • 52
  • 23
  • 12
  • 8
  • Tagged with
  • 3514
  • 1160
  • 972
  • 815
  • 522
  • 487
  • 371
  • 263
  • 236
  • 224
  • 203
  • 202
  • 179
  • 178
  • 177
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
761

Wissenschaftliche Mitteilungen aus dem Institut für Meteorologie der Universität Leipzig

19 October 2016 (has links) (PDF)
No description available.
762

Wissenschaftliche Mitteilungen aus dem Institut für Meteorologie der Universität Leipzig

19 October 2016 (has links) (PDF)
No description available.
763

Meteorologische Arbeiten aus Leipzig

21 October 2016 (has links)
Arbeiten aus dem Institut für Meteorologie der Universität Leipzig
764

Meteorologische Arbeiten ... und Jahresbericht ... des Instituts für Meteorologie der Universität Leipzig

21 October 2016 (has links)
Arbeiten aus dem Institut für Meteorologie der Universität Leipzig
765

Spatiotemporal Variability and Prediction of Rainfall over the Eastern Caribbean

Unknown Date (has links)
Recent, recurrent, and extreme weather events have been a cause for concern over the Eastern Caribbean (EC). Given the dependence on rainfall of agriculture, the main stay of the fragile economies throughout the region, accurate and timely forecasts of seasonal rainfall need to be issued to facilitate decision making in Water Resource Management. Understanding the causes of climate variability can lead to the development of more robust models for climate prediction. So as a diagnostic approach, different techniques are employed. Empirical Orthogonal Function (EOF) analysis is performed in order to isolate the different modes of rainfall variability as well as investigating their amplitudinal modulations. The evolution of external forcing mechanisms that impact on precipitation extremes is also investigated with the use of composites. Based on the strength of the relationship between Sea Surface Temperature Anomalies (SSTA) and EC rainfall, a statistical model is subsequently developed using multivariate Canonical Correlation Analysis (CCA) to predict rainfall over the region on seasonal time scales. The CCA model demonstrated useful skill in predicting seasonal rainfall over the EC up to six months lead. The highest average predictive skill is realized for the June-July-August (JJA) season at one-month lead, while the lowest average skill is realized for the March-April-May (MAM) season at five months lead. The December-January-February (DJF) season maintained steady skill throughout six months lead. Below normal conditions are forecasted by the CCA model for the 2004/2005 dry season (DJF/2004-05, MAM/2005). This outlook is in part, verified from seasonal rainfall totals at two stations within the EC. The outlook for the coming rainy season is for above normal conditions. / A Thesis submitted to the Department of Meteorology In Partial fulfillment of the Requirements for the Degree of Master of Science. / Degree Awarded: Summer Semester, 2005. / Date of Defense: June 27, 2005. / Climate Prediction, Eastern Caribbean Climate, Climate Variability / Includes bibliographical references. / Ming Cai, Professor Directing Thesis; T. N. Krishnamurti, Committee Member; Robert Hart, Committee Member.
766

Assessment of Groundwater Discharge to Lake Barco via Radon Tracing

Unknown Date (has links)
Groundwater-surface water interactions in lakes have been gaining attention in recent years as scientists have recognized the potential significance that groundwater has as a source of nutrients and contaminants to aquatic ecosystems. Such interactions need to be understood in order for us to protect important ecosystems and quantify nutrient loading into lakes. This project set out to test the idea that good estimates could be made of groundwater inputs into Florida lakes using a simple geochemical tracer technique. We hypothesize that a relatively small number of measurements would be sufficient to provide a reasonably good (a factor of 2) estimate of groundwater discharge. Naturally occurring 222Rn makes an ideal tracer because it exists in enriched concentrations in groundwater relative to surface water. We used Lake Barco, a small seepage lake in the Katherine Ordway Preserve, for a detailed pilot study in order to test this hypothesis. The preserve is located about 34 km east of Gainesville, Florida and makes an excellent research site because it is maintained in a pristine state as it is closed off to public access. Two intensive samplings were completed, one in the "dry" season (March 2002) and one in the "wet" season (August 2003). In addition, periodic sampling trips were made to the lake every few weeks to evaluate the spatial and temporal patterns of radon distribution. A 222Rn mass balance was constructed for the lake to evaluate radon fluxes. Once the 222Rn fluxes were determined, groundwater inputs were estimated by dividing these fluxes by the concentration of radon in the water seeping into the lake. The radon concentration is estimated by sediment equilibration experiments using grab samples of sediment and radon activity measurements from monitor wells. We also constructed a traditional hydrologic water budget for Lake Barco. All hydrological variables were either measured or estimated and substituted into a water balance equation, which was then solved for the net groundwater flow term. These estimates were then compared to those from the 222Rn model. Our 222Rn measurements show little discernible spatial variation of radon inventories in the lake on any given day of sampling. Inventories measured at five different stations during the two different intensive sampling trips were all within ±13% of the mean value for each sampling. This amount of variation is considered insignificant, as the estimated analytical variation for the radon measurements is ±10%. We also found that we can estimate the lake inventory at any one station by collecting triplicate samples approximately one meter over the bottom at a single central sampling station. However, our results did display significant temporal variability, responding to rainfall trends that can influence the recharge rates. So, in a lake the size of Lake Barco (12 ha), reasonable groundwater discharge estimates at any given time can be made by triplicate analysis of radon in near-bottom waters and collection and processing of a few sediment samples. The estimations of groundwater discharge to the lake over the period of our study were, on average, 13,000 m3/month and 18,000 m3/month for the radon model and hydrologic budget, respectively. The water balance based estimate might be somewhat low due to differences in hydrogeologic movement under such dry conditions or the large error associated with budget estimations. Considering the large uncertainties in estimating groundwater flow via a hydrologic budget, agreement within a factor of two is considered satisfactory. / A Thesis submitted to the Department of Oceanography in partial fulfillment of the requirements for the degree of Master of Science. / Degree Awarded: Spring Semester, 2004. / Date of Defense: March 29, 2004. / Lake Barco Radon, Seepage lakesG Geochemical tracer, Groundwater / Includes bibliographical references. / William C. Burnett, Professor Directing Thesis; Jeffrey P. Chanton, Committee Member; Wilton Sturges, Committee Member.
767

Metabolic Pathways in Natural Systems: A Tracer Study of Carbon Isotopes

Unknown Date (has links)
The δ13C value of foliage respiration has been considered a constant in the past and modeling efforts have assumed that the δ13C value of foliage respiration is constant and is directly related to substrate without any fractionation. Consecutive δ13C measurements of foliage dark-respired CO2 (δ13Cr) for slash pine trees (Pinus elliottii) over several diel cycles were used to test the hypothesis that significant variation in δ13Cr would be observed. δ13Cr values collected in daylight from all time series showed mid- day 13C enrichment (5 – 10‰) relative to bulk biomass, but values become more 13C depleted following shading and at night and approach bulk-biomass δ13C values by dawn. Assimilation model results suggest that respiration during daylight has the potential to significantly affect ∆13C by as much as 1.6‰, but night dark respiration has little impact on 24-hour integrated ∆13C (0.1‰). We also sampled methane and CO2 from collapse scar bogs (transient permafrost degradation features in permafrost peatlands) to test the hypotheses that microbial respiration and methane production are stimulated by permafrost degradation and collapse and that the fen-like vegetation (i.e. Carex andxi Eriophorum) found in collapse scar bogs near the collapsing edge stimulates acetate fermentation. Our results show that collapse scar bogs have an evolution of spatial variation in methanogenic pathways that is related to surface vegetation cover type. We also demonstrate that changes in stable-isotope fractionation caused by shifts from acetate fermentation and CO2 reduction occur over long time scales (> annual) and are dependent on changes in wetland morphology and surface vegetation cover. We also used radiocarbon as a tracer to test the hypothesis that melting permafrost surrounding the collapse scar bog provides nutrients to the bog-moat location, stimulating the production of radiocarbon-depleted methane. Our results show that the radiocarbon content of methane and DIC at these sites is highly variable and may depend on groundwater input, surface vegetation, and morphological factors associated with the melting permafrost plateau. We conclude that the younger, more labile, carbon stimulating acetate fermentation at one of the sites is supplied by the fen-like surface vegetation, while the older, more recalcitrant, carbon stimulating CO2 reduction at the other site may be supplied by melting permafrost plateau.. / A Dissertation submitted to the Department of Oceanography in partial fulfillment of the requirements for the degree of Doctor of Philosophy. / Degree Awarded: Fall Semester, 2005. / Date of Defense: September 16, 2005. / Carbon Stable Isotopes Fractionation Respiration / Includes bibliographical references. / Jeffrey P. Chanton, Professor Directing Dissertation; Yang Wang, Outside Committee Member; Joel E. Kostka, Committee Member; Behzad Mortazavi, Committee Member; William C. Burnett, Committee Member; John W. Winchester, Committee Member.
768

Morphological Barrier Island Changes and Recovery of Dunes after Hurricane Dennis, St. George Island, Florida

Unknown Date (has links)
A robust dune system is one of the principal factors in the protection of recreational and residential property within barrier islands. Storm surge from significantly large storm events may remove some or all of the dunes during overwash processes and deposit sediment as washover fans or terraces in the back-barrier. During the summer of 2005, Hurricane Dennis greatly overwashed much of the northwest barrier island chain along the Florida panhandle. The post-storm recovery of dunes and morphological changes occurring after Hurricane Dennis within St. George Island State Park is investigated, in addition to the application of numerical methods as a supplemental tool in determining the post-storm "recovery state" of the barrier and envision morphologic trends. Dune recovery rates are estimated by calculating sediment volume changes of profiles through time. One-dimensional, spatial-series Fourier analysis of individual profiles are used to quantify the recovery and morphologic nature of secondary dunes. Two-dimensional Fourier analysis of elevation data were attempted to be used as a tool to discriminate geomorphic trends in the barrier. Digital elevation models are used to describe post-storm morphologic changes, and the future recovery state of the barrier may be supplemented by analyzing the distributions of curvature and gradients calculated numerically from LIDAR data. Results show that secondary dunes recovered at an average rate of ~3-4 cm per month, and sediment volume changes across transects varied between -1.5 m3/m to1.2 m3/m depending on the presence of vegetation, storm-debris pavement, and proximity to washover deposits. Despite some transects having a net sediment volume loss, all dunes in the presence of vegetation had increased in height. Vegetation did not propagate where storm-debris pavement existed during the one-year duration of the study. The presence of vegetation inhibited dune migration thus favoring dune growth or decreasing the effect of erosion from strong wind events. Fourier analysis of profiles captured changes in dune height at specific wavelengths. The highest energies from the spectra were usually at 30 to 40 meter wavelengths for each profile in time, which reflects the immobility of the dunes and may also reflect the controls of vegetation on dune spacing. The results of two-dimensional Fourier analysis on terrain data were difficult to interpret, but may prove a potential use in terrain analysis. Overwash was prevalent throughout the barrier. For the studied area, St. George Island had experienced inundation overwash with an estimated 100,000 ft3/ft net loss of sediment following the hurricane. Nearly the entire foredune complex was removed, save a few remnants. Storm surge had likely penetrated first in areas where foredunes were either low or discontinuous; in these areas, beach widening was less prevalent. In contrast, the beach widening (~30ft) occurred in areas where the foredunes were higher and more continuous. / A Thesis submitted to the Department of Geological Sciences in partial fulfillment of the requirements for the degree of Master of Science. / Degree Awarded: Spring Semester, 2009. / Date of Defense: July 18, 2008. / Dune Recovery, LIDAR; Overwash, Hurricane Dennis / Includes bibliographical references. / Sergio Fagherazzi, Professor Directing Thesis; J. Anthony Stallins, Committee Member; Stephen Kish, Committee Member; Jennifer Georgen, Committee Member.
769

Statistical Prediction of Tropical Cyclone Intensity Using Dynamical and Thermodynamical Inner-Core Parameters Derived from Hwrf Analysis and Forecasts

Unknown Date (has links)
A new multiple linear regression model for short range tropical cyclone intensity prediction is developed. Four new dynamical and thermodynamical predictors based on HWRF output are considered: (1) the horizontal advection of relative angular momentum, (2) energy exchange from the divergent to the rotational kinetic energy (Psi-Chi interactions), (3) the conversion of shear vorticity to curvature vorticity, and (4) the vertical differential of heating in the complete potential vorticity equation. Predictors were calculated using Hurricane Research Weather and Forecast (HWRF) model initial fields. Each predictor was determined to exhibit a statistically significant relationship with 12 hour intensity change in tropical cyclones by an F-test. The predictors were then used as the basis for a multiple linear regression model, following the methodology of the operational Statistical Hurricane Intensity Prediction Scheme (SHIPS). Four additional predictors, intended to represent basic storm information and environmental conditions, were included in the development of a second model. Retrospective forecasts of hurricanes in 2004, 2005, and 2006 were created for both models, and compared to operational SHIPS and HWRF forecasts. Despite relying on HWRF fields for the calculation of predictors, the new model produces better forecasts than HWRF for short term (less than 48-hr) forecasts. Additional methods were developed to extend forecasts beyond 48 hours. This resulted in a systematic improvement of HWRF forecasts. It is proposed that the new model could be used operationally as a new version of the "early" HWRF. / A Thesis submitted to the Department of Earth, Ocean, and Atmospheric Science in partial fulfillment of the requirements for the degree of Master of Science. / Degree Awarded: Summer Semester, 2011. / Date of Defense: April 27, 2011. / Inner-Core, Hurricanes, Statistical Hurricane Intensity Prediction, Tropical Cyclone Intensity, Tropical Cyclones, Multiple Linear Regression, Diagnostics / Includes bibliographical references. / T.N. Krishnamurti Co-, Professor Directing Thesis; Paul Ruscher Co-, Professor Directing Thesis; Vasu Misra, Committee Member; Robert Hart, Committee Member.
770

WRF Nested Large-Eddy Simulations of Deep Convection during SEAC4RS

Unknown Date (has links)
Deep convection is an important component of atmospheric circulations that affects many aspects of weather and climate. Therefore, improved understanding and realistic simulations of deep convection are critical to both operational and climate forecasts. Large-eddy simulations (LESs) often are used with observations to enhance understanding of convective processes. This study develops and evaluates a nested-LES method using the Weather Research and Forecasting (WRF) model. Our goal is to evaluate the extent to which the WRF nested-LES approach is useful for studying deep convection during a real-world case. The method was applied on 2 September 2013, a day of continental convection having a robust set of ground and airborne data available for evaluation. A three domain mesoscale WRF simulation is run first. Then, the finest mesoscale output (1.35 km grid length) is used to separately drive nested-LES domains with grid lengths of 450 and 150 m. Results reveal that the nested-LES approach reasonably simulates a broad spectrum of observations, from reflectivity distributions to vertical velocity profiles, during the study period. However, reducing the grid spacing does not necessarily improve results for our case, with the 450 m simulation outperforming the 150 m version. We find that simulated updrafts in the 150 m simulation are too narrow to overcome the negative effects of entrainment, thereby generating convection that is weaker than observed. Increasing the sub-grid mixing length in the 150 m simulation leads to deeper, more realistic convection, but comes at the expense of delaying the onset of the convection. Overall, results show that both the 450 m and 150 m simulations are influenced considerably by the choice of sub-grid mixing length used in the LES turbulence closure. Finally, the simulations and observations are used to study the processes forcing strong midlevel cloud-edge downdrafts that were observed on 2 September. Results suggest that these downdrafts are forced by evaporative cooling due to mixing near cloud edge and by vertical perturbation pressure gradient forces acting to restore mass continuity around neighboring updrafts. We conclude that the WRF nested-LES approach provides an effective method for studying deep convection for our real-world case. The method can be used to provide insight into physical processes that are important to understanding observations. The WRF nested-LES approach could be adapted for other case studies in which high-resolution observations are available for validation. / A Dissertation submitted to the Department of Earth, Ocean and Atmospheric Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy. / Fall Semester 2015. / November 10, 2015. / convective dynamics, deep convection, large-eddy simulation, WRF / Includes bibliographical references. / Henry E. Fuelberg, Professor Directing Dissertation; Ingo Wiedenhoever, University Representative; Robert E. Hart, Committee Member; Mark A. Bourassa, Committee Member; Vasu Misra, Committee Member; Francis J. Turk, Committee Member.

Page generated in 0.0332 seconds