• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of chemical infrared sensors for the marine environment : first investigations for a deep oceanic sensor for methane

Pennington, Neil A. 08 1900 (has links)
No description available.
2

A 30-Year Record of the Isotopic Composition of Atmospheric Methane

Teama, Doaa Galal Mohammed 19 March 2013 (has links)
Methane (CH4) is one of the most important greenhouse gases after water vapor and carbon dioxide due to its high concentration and global warming potential 25 times than that of CO2 (based on a 100 year time horizon). Its atmospheric concentration has more than doubled from the preindustrial era due to anthropogenic activities such as rice cultivation, biomass burning, and fossil fuel production. However, the rate of increase of atmospheric CH4 (or the growth rate) slowed from 1980 until present. The main reason for this trend is a slowdown in the trend of CH4 sources. Measuring stable isotopes of atmospheric CH4 can constrain changes of CH4 sources. The main goal of this work is to interpret the CH4 trend from 1978-2010 in terms of its sources using measurements of CH4 mixing ratio and its isotopes. The current work presents the measurements and analysis of CH4 and its isotopes (δ13C and δD) of four air archive sample sets collected by the Oregon Graduate Institute (OGI). CH4 isotope ratios (δ13C and δD) were measured by a continuous flow isotope ratio mass spectrometer technique developed at PSU. The first set is for Cape Meares, Oregon which is the oldest and longest set and spans 1977-1999. The integrity of this sample set was evaluated by comparing between our measured CH4 mixing ratio values with those measured values by OGI and was found to be stable. Resulting CH4 seasonal cycle was evaluated from the Cape Meares data. The CH4 seasonal cycle shows a broad maximum during October-April and a minimum between July and August. The seasonal cycles of δ13C and δD have maximum values in May for δ13C and in July for δD and minimum values between September-October for δ13C and in October for δD. These results indicate a CH4 source that is more enriched January-May (e.g. biomass burning) and a source that is more depleted August-October (e.g. microbial). In addition to Cape Meares, air archive sets were analyzed from: South Pole (SPO), Samoa (SMO), Mauna Loa (MLO) 1992-1996. The presented δD measurements are unique measured values during these time periods at these stations. To obtain the long-term in isotopic CH4 from 1978-2010, other datasets of Northern Hemisphere mid-latitude sites are included with Cape Meares. These sites are Olympic Peninsula, Washington; Montaña de Oro, California; and Niwot Ridge, Colorado. The seasonal cycles of CH4 and its isotopes from the composite dataset have the same phase and amplitudes as the Cape Meares site. CH4 growth rate shows a decrease over time 1978-2010 with three main spikes in 1992, 1998, and 2003 consistent with the literature from the global trend. CH4 lifetime is estimated to 9.7 yrs. The δ13C trend in the composite data shows a slow increase from 1978-1987, a more rapid rate of change 1987-2005, and a gradual depletion during 2005-2010. The δD trend in the composite data shows a gradual increase during 1978-2001 and decrease from 2001-2005. From these results, the global CH4 emissions are estimated and show a leveling off sources 1982-2010 with two large peak anomalies in 1998 and 2003. The global average δ13C and δD of CH4 sources are estimated from measured values. The results of these calculations indicate that there is more than one source which controls the decrease in the global CH4 trend. From 1982-2001, δ13C and δD of CH4 sources becomes more depleted due to a decrease in fossil and/or biomass burning sources relative to microbial sources. From 2005-2010, δ13C of CH4 sources returns to its 1981 value. There are two significant peaks in δ13C and δD of CH4 sources in 1998 and 2003 due to the wildfire emissions in boreal areas and in Europe.
3

Mechanisms of Methane Transport Through Trees

Kutschera, Ellynne Marie 20 March 2013 (has links)
Although the dynamics of methane (CH4) emission from croplands and wetlands have been fairly well investigated, the contribution of trees to global methane emission and the mechanisms of tree transport are relatively unknown. Methane emissions from the common wetland tree species Populus trichocarpa (black cottonwood) native to the Pacific Northwest were measured under hydroponic conditions in order to separate plant transport mechanisms from the influence of soil processes. Roots were exposed to methane enriched water and canopy emissions of methane were measured using a canopy enclosure. Methane accumulation in the canopy was generally linear and the average canopy methane flux was 3.0 ± 2.6 μg CH4 min-1. Flux magnitudes from stem experiments scaled to the area of the main tree stem are comparable to whole-canopy flux values, indicating that the majority of methane emitted from the tree leaves through the stem. Samples for stable carbon isotope composition were taken during the canopy experiments. Compared to the isotopic composition of root water methane, canopy methane was depleted in 13C on average by 8.6 ± 3.3 permil; this indicates that methane moving through the tree is not following a purely bulk flow pathway (where no depletion would occur), but is instead subject to at least one fractionating mechanism. When temperature was varied, the flux at the coolest temperature was significantly different from the higher flux at the warmest temperature (p-value less than 0.02). The calculated Q10 for methane flux was 2.4, which indicates a positive feedback with temperature increase. Analysis of δ13C values of emitted CH4 in the temperature experiments shows increasing depletion with cooler temperatures and lower flux. This indicates that not only does the magnitude of flux vary with temperature, but the actual dominant transport mechanism changes as well.
4

Methane fluxes from a northern peatland : mechanisms controlling diurnal and seasonal variation and the magnitude of aerobic methanogenesis

Long, Kevin D, Thesis (University of Lethbridge. Faculty of Arts and Science) January 2008 (has links)
Continuous eddy covariance measurements were conducted for a 125 day period, throughout the 2007 growing season, in a northern Alberta peatland. Significant diurnal and seasonal variation in methane fluxes were observed. Diurnal variation in methane flux was suggested to be due to variation in soil temperature and methane convective flow through vegetation to the atmosphere. Seasonal variation in methane flux was associated with a variety of factors, most notably seasonal variation in the capacity for methane emission at 10 ºC (R10). The R10 values varied as a function of soil temperature and were an important control of seasonal variation in methane flux. Also, a greenhouse gas budget was calculated comparing net methane emission and net CO2 sequestration. This analysis indicated that the peatland was acting as a net sink of radiative forcing agents for the 2007 growing season. / xiii, 100 leaves ; 29 cm. --

Page generated in 0.0876 seconds