Spelling suggestions: "subject:"sethanthane oxidizing bacteria"" "subject:"ethylmethane oxidizing bacteria""
1 |
Active methane oxidizing bacteria in a boreal peat bog ecosystemEsson, Kaitlin Colleen 12 January 2015 (has links)
Boreal peatlands are important ecosystems to the global carbon cycle. Although they cover only 3% of the earth's land surface area, boreal peatlands store roughly one third of the world's soil carbon. Peatlands also comprise a large natural source of methane emitted to the atmosphere. Some methane in peatlands is oxidized before escaping to the atmosphere by aerobic methane oxidizing bacteria. With changing climate conditions, the fate of the stored carbon and emitted methane from these systems is uncertain. One important step toward better understanding the effects of climate change on carbon cycling in peatlands is to ascertain the microorganisms actively involved in carbon cycling. To investigate the active aerobic methane oxidizing bacteria in a boreal peat bog, a combination of microcosm experiments, DNA-stable isotope probing, and next generation sequencing technologies were employed. Studies were conducted on samples from the S1 peat bog in the Marcell Experimental Forest (MEF). Potential rates of methane oxidation were determined to be in the range of 13.85 to 17.26 μmol CH₄ g dwt⁻¹ d⁻¹. After incubating with ¹³C-CH₄, DNA was extracted from these samples, separated into heavy and light fractions with cesium chloride gradient formation by ultracentrifugation and needle fractionation, and fractions were fingerprinted with automated ribosomal intergenic spacer analysis (ARISA) and further interrogated with qPCR. Based on ARISA, distinct banding patterns were observed in heavy fractions in comparison to the light fractions indicating an incorporation of ¹³C into the DNA of active methane oxidizers. This was further supported by a relative enrichment in the functional gene pmoA, which encodes a subunit of the particulate methane monooxygenase, in heavy fractions from samples incubated for fourteen days. Within heavy fractions for samples incubated for 8 and 14 days, the relative abundance of methanotrophs increased to 37% and 25%, respectively, from an in situ abundance of approximately 4%. Phylogenetic analysis revealed that the methanotrophic community was composed of both Alpha and Gammaproteobacterial methanotrophs of the genera Methylocystis, Methylomonas, and Methylovulum. Both Methylocystis and Methylomonas have been detected in peatlands before, however, none of the phylotypes in this study were closely related to any known cultivated members of these groups. These data are the first to implicate Methylovulum as an active methane oxidizer in peatlands, though this organism has been detected in another cold aquatic ecosystem with consistent methane emissions. The Methylovulum sequences from this study, like Methylocystis and Methylomonas, were not closely related to the only cultivated member of this genus. While Methylocystis was dominant in ¹³C-enriched fractions with a relative abundance of 30% of the microbial community after an eight-day incubation, Methylomonas became dominant with a relative abundance of approximately 16% after fourteen days of incubation. The relative abundance of Methylovulum was maintained at 2% in ¹³C- enriched fractions after eight and fourteen days.
|
2 |
Identification des communautés microbiennes des lobes terminaux du système turbiditique du Congo / Identification of microbial communities in the terminal lobes of the Congo turbiditic systemBessette, Sandrine 03 May 2016 (has links)
L'éventail sous-marin profond du Congo, situé sur la marge continentale Congo-Angolaise (côte Ouest Africaine, Océan Atlantique Equatorial Sud) représente un écosystème sédimentaire marin profond unique.Celui-ci est caractérisé par de forts apports en matière organique provenant du fleuve Congo, qui se déversent le long du canyon et au travers de systèmes chenal Jevées actuels jusque dans les zones les plus profondes (5 000 m) où se développe le système des lobes.L'objectif de cette thèse est d'étudier la distribution spatiale et la diversité phylogénétique et fonctionnelle des communautés archéennes et bactériennes en relation avec les caractéristiques et les contraintes de I'environnement.Cette étude a permis de mettre en évidence une distribution géographique régionale et locale des communautés microbiennes contraintes par la distance des différents lobes par rapport à l'embouchure du chenal. La distribution des communautés microbiennes est liée à la disponibilité en accepteurs et donneurs d'électrons issus de la diagénèse précoce de la matière organique. La composition et l'identité taxonomique de ces communautés microbiennes sont comparables aux communautés rencontrées dans des sédiments marins et des zones d'émission de fluides froids riches en méthane.Cette étude révèle également des densités cellulaires relativement élevées de bactéries méthanotrophes aérobies associées à différents habitats sédimentaires particuliers, colonisés par des bivalves Vesicomyidae, des tapis microbiens et des sédiments réduits caractéristiques des environnements d'émissions de fluides froids riches en méthane et hydrogène sulfuré. Ces communautés sont non seulement apparentées à celles rencontrées dans des habitats d'émissions de fluides froids, mais également à celles des habitats terrestres, malgré la distance ~ 1000 km des côtes Africaines.Les travaux menés au cours de cette thèse montrent l'intérêt des études pluridisciplinaires pour comprendre la diversité et le fonctionnement des écosystèmes dans les lobes terminaux du système turbiditique du Congo et apportent de nouvelles informations sur la diversité des microorganismes peu explorée dans les éventails sous-marins profonds. / The Congo deep sea fan, located in the Congo-Angola continental margin (West African coast, Equatorial South Atlantic Ocean) represents a unique deep-sea sedimentary ecosystem. It is characterized by high organic matter inputs from the Congo River, that flow along a canyon and through presently active channel system-lifted into the deeper areas (5 000 m) where the lobes system develops.The aim of this thesis is to study the spatial distribution as well as the phylogenetic and functional diversity of archaeal and bacterial communities in relation with environmental characteristics and constraints of the terminal lobes of the Congo deep see fan, one of the largest submarine fan systems in the world.This study highlights geographical distribution of microbial communities constrained by the distal and proximal distance of the different lobes from the Congo river's channel mouth as well as linked to the electron donor and acceptor availability from organic matter diagenesis. This study revealed quite high abundance of aerobic methane oxidizing bacteria cells at peculiar sedimentary habitats dominated by Vesicomyid bivalves, microbial mats and reduced sediments typical of cold-seep environments. These communities are not only related to the ones encountered in cold seeps, but also to the ones in terrestrial habitats despite an approximately distance of 1000 km offshore the African coast.This thesis underlines the interest of pluridisciplinary studies to understand the ecosystem diversity and functioning in the terminal lobes of the Congo turbiditic system and provides further insights into the underexplored microbial diversity from deep-sea fans.
|
3 |
QUANTIFYING CARBON FLUXES AND ISOTOPIC SIGNATURE CHANGES ACROSS GLOBAL TERRESTRIAL ECOSYSTEMSYoumi Oh (9179345) 29 July 2020 (has links)
<p>This thesis is a collection of three research
articles to quantify carbon fluxes and isotopic signature changes across global
terrestrial ecosystems. Chapter 2, the first article of this thesis, focuses on
the importance of an under-estimated methane soil sink for contemporary and
future methane budgets in the pan-Arctic region. Methane emissions from
organic-rich soils in the Arctic have been extensively studied due to their
potential to increase the atmospheric methane burden as permafrost thaws.
However, this methane source might have been overestimated without considering
high affinity methanotrophs (HAM, methane oxidizing bacteria) recently identified
in Arctic mineral soils. From this study, we find that HAM dynamics double the
upland methane sink (~5.5 TgCH<sub>4</sub>yr<sup>-1</sup>) north of 50°N in
simulations from 2000 to 2016 by integrating the dynamics of HAM and
methanogens into a biogeochemistry model that includes permafrost soil organic
carbon (SOC) dynamics. The increase is equivalent to at least half of the
difference in net methane emissions estimated between process-based models and
observation-based inversions, and the revised estimates better match site-level
and regional observations. The new model projects double wetland methane
emissions between 2017-2100 due to more accessible permafrost carbon. However,
most of the increase in wetland emissions is offset by a concordant increase in
the upland sink, leading to only an 18% increase in net methane emission (from
29 to 35 TgCH<sub>4</sub>yr<sup>-1</sup>). The projected net methane emissions
may decrease further due to different physiological responses between HAM and
methanogens in response to increasing temperature. This article was published
in <i>Nature Climate Change</i> in March
2020.</p>
<p>In Chapter 3, the second article of this
thesis, I develop and validate the first biogeochemistry model to simulate
carbon isotopic signatures (δ<sup>13</sup>C)
of methane emitted from global wetlands, and examined the importance of the wetland
carbon isotope map for studying the global methane cycle. I incorporated a carbon isotope-enabled module into an
extant biogeochemistry model to mechanistically simulate the spatial and
temporal variability of global wetland δ<sup>13</sup>C-CH<sub>4</sub>. The new
model explicitly considers isotopic fractionation during methane production,
oxidation, and transport processes. I estimate a mean global wetland δ<sup>13</sup>C-CH<sub>4</sub> of
-60.78‰ with its seasonal and inter-annual variability. I find that the new
model matches field chamber observations 35% better in terms of root mean
square estimates compared to an empirical static wetland δ<sup>13</sup>C-CH<sub>4</sub> map.
The model also reasonably reproduces the regional heterogeneity of wetland δ<sup>13</sup>C-CH<sub>4</sub> in
Alaska, consistent with vertical profiles of δ<sup>13</sup>C-CH<sub>4</sub>
from NOAA aircraft measurements. Furthermore, I show that the latitudinal
gradient of atmospheric δ<sup>13</sup>C-CH<sub>4</sub> simulated by a chemical
transport model using the new wetland δ<sup>13</sup>C-CH<sub>4</sub> map
reproduces the observed latitudinal gradient based on NOAA/INSTAAR global
flask-air measurements. I believe this study is the first process-based
biogeochemistry model to map the global distribution of wetland δ<sup>13</sup>C-CH<sub>4</sub>,
which will significantly help atmospheric chemistry transport models partition
global methane emissions. This article is in preparation for submission
to <i>Nature Geoscience</i>.</p>
<p>Chapter 4 of this thesis, the third
article, investigates the importance of leaf carbon allocation for seasonal
leaf carbon isotopic signature changes and water use efficiency in temperate
forests. Temperate deciduous trees remobilize stored carbon early in the
growing season to produce new leaves and xylem vessels. The use of remobilized
carbon for building leaf tissue dampens the link between environmental stomatal
response and inferred intrinsic water use efficiency (iWUE) using leaf carbon
isotopic signatures (δ<sup>13</sup>C). So far, few studies consider carbon
allocation processes in interpreting leaf δ<sup>13</sup>C signals. To
understand effects of carbon allocation on δ<sup>13</sup>C and iWUE estimates,
we analyzed and modeled the seasonal leaf δ<sup>13</sup>C of four temperate
deciduous species (<i>Acer saccharum, Liriodendron tulipifera, Sassafras
albidum, </i>and <i>Quercus alba</i>)
and compared the iWUE estimates from different methods, species, and drought
conditions. At the start of the growing season, leaf δ<sup>13</sup>C values
were more enriched, due to remobilized carbon during leaf-out. The bias towards
enriched leaf δ<sup>13</sup>C values explains the higher iWUE from leaf
isotopic methods compared with iWUE from leaf gas exchange measurements. I
further showed that the discrepancy of iWUE estimates between methods may be
species-specific and drought sensitive. The use of δ<sup>13</sup>C of plant
tissues as a proxy for stomatal response to
environmental processes, through iWUE, is complicated due to carbon
allocation and care must be taken when interpreting estimates to avoid proxy
bias. This
article is in review for publication in <i>New
Phytologist</i>.</p>
<p> </p>
|
Page generated in 0.0771 seconds