• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Χρήση τυχαίων χρονικών διαστημάτων για έλεγχο βιομετρικών χαρακτηριστικών

Σταμούλη, Αλεξία 30 April 2014 (has links)
Η μέθοδος αναγνώρισης μέσω του τρόπου πληκτρολόγησης αποτελεί μία μέθοδο αναγνώρισης βιομετρικών χαρακτηριστικών με στόχο να ελαχιστοποιηθεί ο κίνδυνος κλοπής των προσωπικών κωδικών των πελατών ενός συστήματος. Το παρόν βιομετρικό σύστημα βασίζεται στο σενάριο ότι ο ρυθμός με τον οποίο ένα πρόσωπο πληκτρολογεί είναι ξεχωριστός. Το βιομετρικό σύστημα έχει δύο λειτουργίες, την εγγραφή των πελατών στο σύστημα και τη σύγκριση. Για την εγγραφή απαραίτητη είναι η εξαγωγή των προτύπων των πελατών τα οποία αποθηκεύονται στη βάση δεδομένων του συστήματος ενώ για στη σύγκριση το πρότυπο του χρήστη συγκρίνεται με το πρότυπο του πελάτη που ισχυρίζεται ότι είναι. Στη παρούσα εργασία η εξαγωγή τον προτύπων πραγματοποιείται μέσω μία σειράς αλγοριθμικών διαδικασιών. Αρχικά η μονοδιάστατη χαρακτηριστική χρονοσειρά του χρήστη μετατρέπεται μέσω της μεθόδου Method of Delays σε ένα πολυδιάστατο διάνυσμα που λειτουργεί ως χαρακτηριστικό της ακολουθίας. Στη συνέχεια χρησιμοποιούμε δύο διαφορετικές μεθόδους για να υπολογίσουμε τις ανομοιότητες μεταξύ των πολυδιάστατων διανυσμάτων που προέκυψαν. Οι δύο αυτές μέθοδοι είναι οι Wald-Wolfowitz test και Mutual Nearest Point Distance. Οι τιμές αυτές τοποθετούνται σε έναν πίνακα κάθε στοιχείο του οποίου αναπαριστά την ανομοιότητα μεταξύ δύο χρονοσειρών. Ο πίνακας αυτός μπορεί είτε να αποτελέσει το σύνολο των προτύπων των χρηστών είτε να χρησιμοποιηθεί ως είσοδο στη μέθοδο Multidimensional Scaling που χρησιμοποιείται για μετατροπή του πίνακα ανομοιοτήτων σε διανύσματα και εξαγωγή νέων προτύπων. Τέλος, προτείνουμε ως επέκταση της εργασίας την εκπαίδευση του βιομετρικού συστήματος με χρήση των τεχνικών Support Vector Machines. Για τη λειτουργία της σύγκρισης εξάγουμε πάλι το πρότυπο του χρήστη με την ίδια διαδικασία και το συγκρίνουμε με μία τιμή κατωφλίου. Τέλος, ο έλεγχος της αξιοπιστίας του συστήματος πραγματοποιείται μέσω της χρήσης τριών δεικτών απόδοσης, Equal Error Rate, False Rejection Rate και False Acceptance Rate. / The identification method via keystroke is a method of identifying biometric features in order to minimize the risk of theft of personal codes of customers of a system. The present biometric system based on the scenario that the rate at which a person presses the keyboard buttons is special. The biometric system has two functions, the enrollment of customers in the system and their test. For enrollment, it is necessary to export standards of customers’ information stored in the system database and for the test the standard of the user is compared with the standard of the user that is intended to be the customer. In the present thesis the export of the standards is taken place via a series of algorithmic procedures. Initially,the one dimensional characteristic time series of user is converted, by the technique Method of Delays, in a multidimensional vector that acts as a feature of the sequence. Then, two different methods are used to compute the dissimilarities between multidimensional vectors obtained. These two methods are the Wald-Wolfowitz test and the Mutual Nearest Point Distance. These values are placed in an array, each element of which represents the dissimilarity between two time series. This table can be either the standards of users or can be entry in the Multidimensional Scaling method used to convert the table disparities in vectors and then produce new standards of users. Finally, we propose as extension of our thesis, the training of biometric system with using the techniques of Support Vector Machine. For the test, again the pattern of the user is extracted with the same procedure and is compared to a threshold. Finally, the reliability of the system is carried out through the use of three performance indicators, Equal Error Rate, False Rejection Rate and False Acceptance Rate.

Page generated in 0.0555 seconds