Spelling suggestions: "subject:"c.method off short characteristics"" "subject:"c.method oof short characteristics""
1 |
Amélioration des méthodes de calcul de cœurs de réacteurs nucléaires dans APOLLO3 : décomposition de domaine en théorie du transport pour des géométries 2D et 3D avec une accélération non linéaire par la diffusion / Contribution to the development of methods for nuclear reactor core calculations with APOLLO3 code : domain decomposition in transport theory for 2D and 3D geometries with nonlinear diffusion accelerationLenain, Roland 15 September 2015 (has links)
Ce travail de thèse est consacré à la mise en œuvre d’une méthode de décomposition de domaine appliquée à l’équation du transport. L’objectif de ce travail est l’accès à des solutions déterministes haute-fidélité permettant de correctement traiter les hétérogénéités des réacteurs nucléaires, pour des problèmes dont la taille varie d’un motif d’assemblage en 3 dimensions jusqu’à celle d’un grand cœur complet en 3D. L’algorithme novateur développé au cours de la thèse vise à optimiser l’utilisation du parallélisme et celle de la mémoire. La démarche adoptée a aussi pour but la diminution de l’influence de l’implémentation parallèle sur les performances. Ces objectifs répondent aux besoins du projet APOLLO3, développé au CEA et soutenu par EDF et AREVA, qui se doit d’être un code portable (pas d’optimisation sur une architecture particulière) permettant de réaliser des modélisations haute-fidélité (best estimate) avec des ressources allant des machines de bureau aux calculateurs disponibles dans les laboratoires d’études. L’algorithme que nous proposons est un algorithme de Jacobi Parallèle par Bloc Multigroupe. Chaque sous domaine est un problème multigroupe à sources fixes ayant des sources volumiques (fission) et surfaciques (données par les flux d’interface entre les sous domaines). Le problème multigroupe est résolu dans chaque sous domaine et une seule communication des flux d’interface est requise par itération de puissance. Le rayon spectral de l’algorithme de résolution est rendu comparable à celui de l’algorithme de résolution classique grâce à une méthode d’accélération non linéaire par la diffusion bien connue nommée Coarse Mesh Finite Difference. De cette manière une scalabilité idéale est atteignable lors de la parallélisation. L’organisation de la mémoire, tirant parti du parallélisme à mémoire partagée, permet d’optimiser les ressources en évitant les copies de données redondantes entre les sous domaines. Les architectures de calcul à mémoire distribuée sont rendues accessibles par un parallélisme hybride qui combine le parallélisme à mémoire partagée et à mémoire distribuée. Pour des problèmes de grande taille, ces architectures permettent d’accéder à un plus grand nombre de processeurs et à la quantité de mémoire nécessaire aux modélisations haute-fidélité. Ainsi, nous avons réalisé plusieurs exercices de modélisation afin de démontrer le potentiel de la réalisation : calcul de cœur et de motifs d’assemblages en 2D et 3D prenant en compte les contraintes de discrétisation spatiales et énergétiques attendues. / This thesis is devoted to the implementation of a domain decomposition method applied to the neutron transport equation. The objective of this work is to access high-fidelity deterministic solutions to properly handle heterogeneities located in nuclear reactor cores, for problems’ size ranging from colorsets of assemblies to large reactor cores configurations in 2D and 3D. The innovative algorithm developed during the thesis intends to optimize the use of parallelism and memory. The approach also aims to minimize the influence of the parallel implementation on the performances. These goals match the needs of APOLLO3 project, developed at CEA and supported by EDF and AREVA, which must be a portable code (no optimization on a specific architecture) in order to achieve best estimate modeling with resources ranging from personal computer to compute cluster available for engineers analyses. The proposed algorithm is a Parallel Multigroup-Block Jacobi one. Each subdomain is considered as a multi-group fixed-source problem with volume-sources (fission) and surface-sources (interface flux between the subdomains). The multi-group problem is solved in each subdomain and a single communication of the interface flux is required at each power iteration. The spectral radius of the resolution algorithm is made similar to the one of a classical resolution algorithm with a nonlinear diffusion acceleration method: the well-known Coarse Mesh Finite Difference. In this way an ideal scalability is achievable when the calculation is parallelized. The memory organization, taking advantage of shared memory parallelism, optimizes the resources by avoiding redundant copies of the data shared between the subdomains. Distributed memory architectures are made available by a hybrid parallel method that combines both paradigms of shared memory parallelism and distributed memory parallelism. For large problems, these architectures provide a greater number of processors and the amount of memory required for high-fidelity modeling. Thus, we have completed several modeling exercises to demonstrate the potential of the method: 2D full core calculation of a large pressurized water reactor and 3D colorsets of assemblies taking into account the constraints of space and energy discretization expected for high-fidelity modeling.
|
Page generated in 0.1009 seconds